Sisterhood
in the Gale-Shapley Matching Algorithm

Yannai A. Gonczarowski

Einstein Institute of Mathematics and Center for the Study of Rationality
The Hebrew University of Jerusalem

June 3, 2013

Joint work with Ehud Friedgut

The Electronic Journal of Combinatorics 20(2) (2013), #P12
The Stable Matching Problem

- Two disjoint finite sets to be matched: women W and men M.
 - Assume 1-to-1 for now.
 - Assume $|W| = |M|$ for now.
The Stable Matching Problem

- Two disjoint finite sets to be matched: women W and men M.
 - Assume 1-to-1 for now.
 - Assume $|W| = |M|$ for now.

- Preferences for each woman and for each man.
 - Assume a strict order of preference for each woman over all men and vice versa.
 - Assume no blacklists for now.
The Stable Matching Problem

- Two disjoint finite sets to be matched: women W and men M.
 - Assume 1-to-1 for now.
 - Assume $|W| = |M|$ for now.

- Preferences for each woman and for each man.
 - Assume a strict order of preference for each woman over all men and vice versa.
 - Assume no blacklists for now.

- The goal: a stable matching.
 - If w and m are matched, and if w' and m' are matched, then w and m' should not both prefer each other over their spouses.
Gale and Shapley (1962)

The following algorithm yields a stable matching.

1. On each night, every man serenades under the window of the woman he prefers most out of those who have not yet rejected him.
The Gale-Shapley Deferred-Acceptance Algorithm

Gale and Shapley (1962)

The following algorithm yields a stable matching.

1. On each night, every man serenades under the window of the woman he prefers most out of those who have not yet rejected him.

2. On each night, every woman rejects all the men serenading under her window, except for the one she prefers most among them.
The Gale-Shapley Deferred-Acceptance Algorithm

Gale and Shapley (1962)

The following algorithm yields a stable matching.

1. On each night, every man serenades under the window of the woman he prefers most out of those who have not yet rejected him.

2. On each night, every woman rejects all the men serenading under her window, except for the one she prefers most among them.

3. When no more rejections occur, each woman is matched with the man serenading under her window.
Gender Duality and Manipulation Incentives

Gale and Shapley (1962)
No stable matching is better for any man.

McVitie and Wilson (1971)
No stable matching is worse for any woman.
Gender Duality and Manipulation Incentives

Gale and Shapley (1962)
No stable matching is better for any man.

McVitie and Wilson (1971)
No stable matching is worse for any woman.

Dubins and Freedman (1981)
No subset of men can lie in a way that would make them all better off lying.

Gale and Sotomayor (1985)
Generally, there exists a woman who would be better off lying.
Gender Duality and Manipulation Incentives

Gale and Shapley (1962)
No stable matching is better for any man.

McVitie and Wilson (1971)
No stable matching is worse for any woman.

Dubins and Freedman (1981)
No subset of men can lie in a way that would make them all better off lying.

Gale and Sotomayor (1985)
Generally, there exists a woman who would be better off lying.

Note: the latter two do not follow from the former two.
Example: Manipulation by Women

<table>
<thead>
<tr>
<th>Men’s Preferences</th>
<th>Women’s Preferences</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_1)</td>
<td>(w_2) (w_1) (w_3)</td>
</tr>
<tr>
<td>(m_2)</td>
<td>(w_1) (w_2) (w_3)</td>
</tr>
<tr>
<td>(m_3)</td>
<td>(w_1) (w_3) (w_2)</td>
</tr>
<tr>
<td>(w_1)</td>
<td>(m_1) (m_2) (m_3)</td>
</tr>
<tr>
<td>(w_2)</td>
<td>(m_2) (m_1)</td>
</tr>
<tr>
<td>(w_3)</td>
<td>any</td>
</tr>
</tbody>
</table>
Example: Manipulation by Women

<table>
<thead>
<tr>
<th>Men’s Preferences</th>
<th>Women’s Preferences</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_1)</td>
<td>(w_2) (w_1) (w_3)</td>
</tr>
<tr>
<td>(m_2)</td>
<td>(w_1) (w_2) (w_3)</td>
</tr>
<tr>
<td>(m_3)</td>
<td>(w_1) (w_3) (w_2)</td>
</tr>
<tr>
<td>(w_1)</td>
<td>(m_1) (m_2) (m_3)</td>
</tr>
<tr>
<td>(w_2)</td>
<td>(m_2) (m_1)</td>
</tr>
<tr>
<td>(w_3)</td>
<td>any</td>
</tr>
</tbody>
</table>

1. \(w_1 \) to \(m_2, m_3 \)
2. \(w_2 \) to \(m_1 \)
3. \(w_3 \) is unharmed.

\(w_1 \) made \(w_2 \) "give up" \(m_1 \) by making sure \(w_2 \) is approached by someone \(w_2 \) prefers better.
Example: Manipulation by Women

Men’s Preferences

<table>
<thead>
<tr>
<th>m_1</th>
<th>w_2</th>
<th>w_1</th>
<th>w_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_2</td>
<td>w_1</td>
<td>w_2</td>
<td>w_3</td>
</tr>
<tr>
<td>m_3</td>
<td>w_1</td>
<td>w_3</td>
<td>w_2</td>
</tr>
</tbody>
</table>

Women’s Preferences

<table>
<thead>
<tr>
<th>w_1</th>
<th>m_1 > m_2 > m_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_2</td>
<td>m_2 > m_1</td>
</tr>
<tr>
<td>w_3</td>
<td>any</td>
</tr>
</tbody>
</table>

- w_1 improved her match, but so did w_2; and w_3 is unharmed.
- w_1 made w_2 “give up” m_1 by making sure w_2 is approached by someone w_2 prefers better.
Example: Manipulation by Women

<table>
<thead>
<tr>
<th>Men’s Preferences</th>
<th>Women’s Preferences</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_1</td>
<td>w_2</td>
</tr>
<tr>
<td>m_2</td>
<td>w_1</td>
</tr>
<tr>
<td>m_3</td>
<td>w_1</td>
</tr>
</tbody>
</table>

w_1	$m_1 > m_2 > m_3 > m_2$
w_2	$m_2 > m_1$
w_3	any

\[1 \quad m_2, m_3 \]
\[2 \quad m_2 \]

\[m_1 \]
\[m_3 \]
Example: Manipulation by Women

<table>
<thead>
<tr>
<th>Men’s Preferences</th>
<th>Women’s Preferences</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_1</td>
<td>w_2 w_1 w_3</td>
</tr>
<tr>
<td>m_2</td>
<td>w_1 w_2 w_3</td>
</tr>
<tr>
<td>m_3</td>
<td>w_1 w_3 w_2</td>
</tr>
</tbody>
</table>

w_1	m_1 m_2 m_3
w_2	m_2 m_1
w_3	any

- w_1 made w_2 “give up” m_1 by making sure w_2 is approached by someone w_2 prefers better.
Example: Manipulation by Women

Men’s Preferences

<table>
<thead>
<tr>
<th>m_1</th>
<th>w_2</th>
<th>w_1</th>
<th>w_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_2</td>
<td>w_1</td>
<td>w_2</td>
<td>w_3</td>
</tr>
<tr>
<td>m_3</td>
<td>w_1</td>
<td>w_3</td>
<td>w_2</td>
</tr>
</tbody>
</table>

Women’s Preferences

<table>
<thead>
<tr>
<th>w_1</th>
<th>$m_1 > m_2 > m_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_2</td>
<td>$m_2 > m_1$</td>
</tr>
<tr>
<td>w_3</td>
<td>any</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
&\begin{array}{c}
 w_1 \\
1 & m_2, m_3 \\
2 & m_2 \\
2 & m_3 \\
3 & m_1, m_3
\end{array} \\
&\begin{array}{c}
 w_2 \\
1 & m_1 \\
2 & m_1, m_2 \\
3 & m_2
\end{array} \\
&\begin{array}{c}
 w_3 \\
1 & m_3
\end{array}
\]
Example: Manipulation by Women

<table>
<thead>
<tr>
<th>Men’s Preferences</th>
<th>Women’s Preferences</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_1</td>
<td>w_2</td>
</tr>
<tr>
<td>m_2</td>
<td>w_1</td>
</tr>
<tr>
<td>m_3</td>
<td>w_1</td>
</tr>
</tbody>
</table>

- w_1 improved her match, but so did w_2; and w_3 is unharmed.
- w_1 made w_2 "give up" m_1 by making sure w_2 is approached by someone w_2 prefers better.
Example: Manipulation by Women

<table>
<thead>
<tr>
<th>Men’s Preferences</th>
<th>Women’s Preferences</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_1</td>
<td>w_2</td>
</tr>
<tr>
<td>m_2</td>
<td>w_1</td>
</tr>
<tr>
<td>m_3</td>
<td>w_1</td>
</tr>
</tbody>
</table>

- w_1 improved her match, but so did w_2; and w_3 is unharmed.
Example: Manipulation by Women

<table>
<thead>
<tr>
<th>Men’s Preferences</th>
<th>Women’s Preferences</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_1</td>
<td>w_2</td>
</tr>
<tr>
<td>m_2</td>
<td>w_1</td>
</tr>
<tr>
<td>m_3</td>
<td>w_1</td>
</tr>
<tr>
<td>w_1</td>
<td>$m_1 > m_{23} > m_{32}$</td>
</tr>
<tr>
<td>w_2</td>
<td>$m_2 > m_1$</td>
</tr>
<tr>
<td>w_3</td>
<td>any</td>
</tr>
</tbody>
</table>

- w_1 improved her match, but so did w_2; and w_3 is unharmed.
- w_1 made w_2 “give up” m_1 by making sure w_2 is approached by someone w_2 prefers better.
Sisterhood Theorem

Assume that a subset of the women declare false orders of preference for themselves.

We examines two runs of the Gale-Shapley algorithm:
- **OA** — according to everyone’s true preferences; yields the matching O.
- **NA** — according to the liars’ false preferences, and everyone else’s true preferences; yields the matching N.
Sisterhood Theorem

Assume that a subset of the women declare false orders of preference for themselves.

We examines two runs of the Gale-Shapley algorithm:

- **OA** — according to everyone’s true preferences; yields the matching O.
- **NA** — according to the liars’ false preferences, and everyone else’s true preferences; yields the matching N.

Theorem (Sisterhood)

*Under the above conditions, if all *lying* women are weakly better off, then:*

1. All women are weakly better off.
2. All men are weakly worse off.*
Sisterhood Theorem

Assume that a subset of the women declare false orders of preference for themselves.

We examines two runs of the Gale-Shapley algorithm:
- \(OA \) — according to everyone’s true preferences; yields the matching \(O \).
- \(NA \) — according to the liars’ false preferences, and everyone else’s true preferences; yields the matching \(N \).

Theorem (Sisterhood)

Under the above conditions, if all lying women are weakly better off, then:

1. *All women are weakly better off.*
2. *All men are weakly worse off.*

No such “hoodness” exists within any other subset of \(W \cup M \). Indeed, when even a single man lies and is weakly b/o, some women and men may be b/o, and some others — w/o.
Observation

If every lying woman \(w \) lies in an optimal way (i.e. the lies constitute a Nash Equilibrium in the lying game), then the new matching is stable.
An Easy Proof?

Observation

If every lying woman w lies in an optimal way (i.e. the lies constitute a Nash Equilibrium in the lying game), then the new matching is stable.

Proof.

The new matching is obviously stable w.r.t. the new preferences. It is thus enough to consider couples in which at least one liar participates.

\[
\begin{array}{cc}
 w & w' \\
 m & m'
\end{array}
\]
An Easy Proof?

Observation

If every lying woman w lies in an optimal way (i.e. the lies constitute a Nash Equilibrium in the lying game), then the new matching is stable.

Proof.

The new matching is obviously stable w.r.t. the new preferences. It is thus enough to consider couples in which at least one liar participates.

\[
\begin{array}{cc}
 w & w' \\
 \mid & \mid \\
 m & m'
\end{array}
\]

So, what’s the problem? Why would someone lie in a non-optimal way? Why do we care about non-equilibrium?
When a Lie Need Not be Optimal

<table>
<thead>
<tr>
<th>Men’s Preferences</th>
<th>Women’s Preferences</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_1)</td>
<td>(w_1)</td>
</tr>
<tr>
<td>(m_2)</td>
<td>(w_2)</td>
</tr>
<tr>
<td>(m_3)</td>
<td>(w_3)</td>
</tr>
<tr>
<td>(m_4)</td>
<td>(w_1)</td>
</tr>
</tbody>
</table>

Yannai A. Gonczarowski (HUJI)
Sisterhood in the Gale-Shapley Matching Algorithm
June 3, 2013
When a Lie Need Not be Optimal

<table>
<thead>
<tr>
<th>Men’s Preferences</th>
<th>Women’s Preferences</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_1</td>
<td>w_1</td>
</tr>
<tr>
<td>m_2</td>
<td>w_2</td>
</tr>
<tr>
<td>m_3</td>
<td>w_3</td>
</tr>
<tr>
<td>m_4</td>
<td>w_1</td>
</tr>
<tr>
<td>w_1</td>
<td>$m_3 > m_1 > m_2, m_4$</td>
</tr>
<tr>
<td>w_2</td>
<td>$m_3 > m_1 > m_2, m_4$</td>
</tr>
<tr>
<td>w_3</td>
<td>$m_2 > m_1 > m_3$</td>
</tr>
<tr>
<td>w_4</td>
<td>any</td>
</tr>
</tbody>
</table>

1. m_4, m_1
2. m_2
3. m_3
4. m_4, m_1
When a Lie Need Not be Optimal

Men’s Preferences

<table>
<thead>
<tr>
<th>m_1</th>
<th>w_1</th>
<th>w_3</th>
<th>w_2</th>
<th>w_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_2</td>
<td>w_2</td>
<td>w_3</td>
<td>any</td>
<td>any</td>
</tr>
<tr>
<td>m_3</td>
<td>w_3</td>
<td>w_2</td>
<td>w_1</td>
<td>w_4</td>
</tr>
<tr>
<td>m_4</td>
<td>w_1</td>
<td>w_4</td>
<td>any</td>
<td>any</td>
</tr>
</tbody>
</table>

Women’s Preferences

w_1	$m_3 > m_1 > m_2, m_4$
w_2	$m_3 > m_1 > m_2, m_4$
w_3	$m_2 > m_1 > m_3$
w_4	any
When a Lie Need Not be Optimal

Men's Preferences

<table>
<thead>
<tr>
<th>m_1</th>
<th>w_1</th>
<th>w_3</th>
<th>w_2</th>
<th>w_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_2</td>
<td>w_2</td>
<td>w_3</td>
<td>any</td>
<td>any</td>
</tr>
<tr>
<td>m_3</td>
<td>w_3</td>
<td>w_2</td>
<td>w_1</td>
<td>w_4</td>
</tr>
<tr>
<td>m_4</td>
<td>w_1</td>
<td>w_4</td>
<td>any</td>
<td>any</td>
</tr>
</tbody>
</table>

Women's Preferences

<table>
<thead>
<tr>
<th>w_1</th>
<th>$m_3 > m_4 > m_2, m_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_2</td>
<td>$m_3 > m_1 > m_2, m_4$</td>
</tr>
<tr>
<td>w_3</td>
<td>$m_2 > m_1 > m_3$</td>
</tr>
<tr>
<td>w_4</td>
<td>any</td>
</tr>
</tbody>
</table>

1. m_4, m_1
2. m_1

Yannai A. Gonczarowski (HUJI)
Sisterhood in the Gale-Shapley Matching Algorithm
June 3, 2013
When a Lie Need Not be Optimal

Men’s Preferences

<table>
<thead>
<tr>
<th>m1</th>
<th>w₁</th>
<th>w₃</th>
<th>w₂</th>
<th>w₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>m₂</td>
<td>w₂</td>
<td>w₃</td>
<td>any</td>
<td>any</td>
</tr>
<tr>
<td>m₃</td>
<td>w₃</td>
<td>w₂</td>
<td>w₁</td>
<td>w₄</td>
</tr>
<tr>
<td>m₄</td>
<td>w₁</td>
<td>w₄</td>
<td>any</td>
<td>any</td>
</tr>
</tbody>
</table>

Women’s Preferences

<table>
<thead>
<tr>
<th>w₁</th>
<th>m₃ > m₄ > m₂, m₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>w₂</td>
<td>m₃ > m₃ > w₂, m₄</td>
</tr>
<tr>
<td>w₃</td>
<td>m₂ > m₁ > m₃</td>
</tr>
<tr>
<td>w₄</td>
<td>any</td>
</tr>
</tbody>
</table>

Sisterhood in the Gale-Shapley Matching Algorithm

Yannai A. Gonczarowski (HUJI)
When a Lie Need Not be Optimal

Men’s Preferences

<table>
<thead>
<tr>
<th>m1</th>
<th>w1</th>
<th>w3</th>
<th>w2</th>
<th>w4</th>
</tr>
</thead>
<tbody>
<tr>
<td>m2</td>
<td>w2</td>
<td>w3</td>
<td>any</td>
<td>any</td>
</tr>
<tr>
<td>m3</td>
<td>w3</td>
<td>w2</td>
<td>w1</td>
<td>w4</td>
</tr>
<tr>
<td>m4</td>
<td>w1</td>
<td>w4</td>
<td>any</td>
<td>any</td>
</tr>
</tbody>
</table>

Women’s Preferences

<table>
<thead>
<tr>
<th>w1</th>
<th>m3 > m4 > m2, m1</th>
</tr>
</thead>
<tbody>
<tr>
<td>w2</td>
<td>m3 > m1 > m2, m4</td>
</tr>
<tr>
<td>w3</td>
<td>m2 > m1 > m3</td>
</tr>
<tr>
<td>w4</td>
<td>any</td>
</tr>
</tbody>
</table>

Yannai A. Gonczarowski (HUJI)
Sisterhood in the Gale-Shapley Matching Algorithm
June 3, 2013
When a Lie Need Not be Optimal

<table>
<thead>
<tr>
<th>Men’s Preferences</th>
<th>Women’s Preferences</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_1</td>
<td>w_1</td>
</tr>
<tr>
<td>m_2</td>
<td>w_2</td>
</tr>
<tr>
<td>m_3</td>
<td>w_3</td>
</tr>
<tr>
<td>m_4</td>
<td>w_1</td>
</tr>
</tbody>
</table>

1. m_4, m_1
2. m_1
3. m_4
4. m_4
5. m_2
6. m_3
7. m_1, m_3
8. m_1, m_2

When a Lie Need Not be Optimal

Men’s Preferences

<table>
<thead>
<tr>
<th>m_1</th>
<th>w_1</th>
<th>w_3</th>
<th>w_2</th>
<th>w_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_2</td>
<td>w_2</td>
<td>w_3</td>
<td>any</td>
<td>any</td>
</tr>
<tr>
<td>m_3</td>
<td>w_3</td>
<td>w_2</td>
<td>w_1</td>
<td>w_4</td>
</tr>
<tr>
<td>m_4</td>
<td>w_1</td>
<td>w_4</td>
<td>any</td>
<td>any</td>
</tr>
</tbody>
</table>

Women’s Preferences

<table>
<thead>
<tr>
<th>w_1</th>
<th>$m_3 > m_4 > m_2, m_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_2</td>
<td>$m_3 > m_1 > m_2, m_4$</td>
</tr>
<tr>
<td>w_3</td>
<td>$m_2 > m_1 > m_3$</td>
</tr>
<tr>
<td>w_4</td>
<td>any</td>
</tr>
</tbody>
</table>
When a Lie Need Not be Optimal

<table>
<thead>
<tr>
<th>Men’s Preferences</th>
<th>Women’s Preferences</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_1)</td>
<td>(w_1) (w_3) (w_2) (w_4)</td>
</tr>
<tr>
<td>(m_2)</td>
<td>(w_2) (w_3) any any</td>
</tr>
<tr>
<td>(m_3)</td>
<td>(w_3) (w_2) (w_1) (w_4)</td>
</tr>
<tr>
<td>(m_4)</td>
<td>(w_1) (w_4) any any</td>
</tr>
<tr>
<td>w_1</td>
<td>(m_3) (m_4) (m_2), (m_4)</td>
</tr>
<tr>
<td>w_2</td>
<td>(m_3) (m_1) (m_2), (m_4)</td>
</tr>
<tr>
<td>w_3</td>
<td>(m_2) (m_3) (m_1), (m_3)</td>
</tr>
<tr>
<td>w_4</td>
<td>any</td>
</tr>
</tbody>
</table>

\(m_4 \), \(m_1 \)
\(m_2 \)
\(m_2 \), \(m_3 \)
\(m_1 \), \(m_3 \)
\(m_1 \), \(m_3 \)
\(m_2 \)

improved her match, but so did \(w_2 \); and \(w_3 \) is unharmed.
When a Lie Need Not be Optimal

Men’s Preferences

<table>
<thead>
<tr>
<th>m_1</th>
<th>w_1</th>
<th>w_3</th>
<th>w_2</th>
<th>w_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_2</td>
<td>w_2</td>
<td>w_3</td>
<td>any</td>
<td>any</td>
</tr>
<tr>
<td>m_3</td>
<td>w_3</td>
<td>w_2</td>
<td>w_1</td>
<td>w_4</td>
</tr>
<tr>
<td>m_4</td>
<td>w_1</td>
<td>w_4</td>
<td>any</td>
<td>any</td>
</tr>
</tbody>
</table>

Women’s Preferences

<table>
<thead>
<tr>
<th>w_1</th>
<th>$m_3 > m_4 > m_2, m_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_2</td>
<td>$m_3 > m_1 > m_2, m_4$</td>
</tr>
<tr>
<td>w_3</td>
<td>$m_2 > m_1 > m_3$</td>
</tr>
<tr>
<td>w_4</td>
<td>any</td>
</tr>
</tbody>
</table>
When a Lie Need Not be Optimal

Men’s Preferences

<table>
<thead>
<tr>
<th>m_1</th>
<th>w_1</th>
<th>w_3</th>
<th>w_2</th>
<th>w_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_2</td>
<td>w_2</td>
<td>w_3</td>
<td>any</td>
<td>any</td>
</tr>
<tr>
<td>m_3</td>
<td>w_3</td>
<td>w_2</td>
<td>w_1</td>
<td>w_4</td>
</tr>
<tr>
<td>m_4</td>
<td>w_1</td>
<td>w_4</td>
<td>any</td>
<td>any</td>
</tr>
</tbody>
</table>

Women’s Preferences

<table>
<thead>
<tr>
<th>w_1</th>
<th>$m_3 > m_4 > m_2, m_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_2</td>
<td>$m_2 > m_1 > m_3$</td>
</tr>
<tr>
<td>w_3</td>
<td>$m_2 > m_1 > m_3$</td>
</tr>
<tr>
<td>w_4</td>
<td>any</td>
</tr>
</tbody>
</table>
When a Lie Need Not be Optimal

Men’s Preferences

<table>
<thead>
<tr>
<th>m_1</th>
<th>w_1</th>
<th>w_3</th>
<th>w_2</th>
<th>w_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_2</td>
<td>w_2</td>
<td>w_3</td>
<td>any</td>
<td>any</td>
</tr>
<tr>
<td>m_3</td>
<td>w_3</td>
<td>w_2</td>
<td>w_1</td>
<td>w_4</td>
</tr>
<tr>
<td>m_4</td>
<td>w_1</td>
<td>w_4</td>
<td>any</td>
<td>any</td>
</tr>
</tbody>
</table>

Women’s Preferences

<table>
<thead>
<tr>
<th>w_1</th>
<th>$m_3 > m_4 > m_2, m_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_2</td>
<td>$m_2 > m_1 > m_3$</td>
</tr>
<tr>
<td>w_3</td>
<td>$m_2 > m_1 > m_3$</td>
</tr>
<tr>
<td>w_4</td>
<td>m_1</td>
</tr>
</tbody>
</table>

Sisterhood in the Gale-Shapley Matching Algorithm

Yannai A. Gonczarowski (HUJI)
When a Lie Need Not be Optimal

Men’s Preferences

<table>
<thead>
<tr>
<th>m_1</th>
<th>w_1</th>
<th>w_3</th>
<th>w_2</th>
<th>w_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_2</td>
<td>w_2</td>
<td>w_3</td>
<td>any</td>
<td>any</td>
</tr>
<tr>
<td>m_3</td>
<td>w_3</td>
<td>w_2</td>
<td>w_1</td>
<td>w_4</td>
</tr>
<tr>
<td>m_4</td>
<td>w_1</td>
<td>w_4</td>
<td>any</td>
<td>any</td>
</tr>
</tbody>
</table>

Women’s Preferences

<table>
<thead>
<tr>
<th>w_1</th>
<th>m_3</th>
<th>m_4</th>
<th>m_2, m_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_2</td>
<td>m_2</td>
<td>m_4</td>
<td>m_2, m_3</td>
</tr>
<tr>
<td>w_3</td>
<td>m_2</td>
<td>m_1</td>
<td>m_1, m_2</td>
</tr>
<tr>
<td>w_4</td>
<td>any</td>
<td>m_1</td>
<td>m_2</td>
</tr>
</tbody>
</table>

Yannai A. Gonczarowski (HUJI)
Sisterhood in the Gale-Shapley Matching Algorithm
June 3, 2013 8 / 18
When a Lie Need Not be Optimal (cont.)

In this example:

- The truth is an optimal strategy for any coalition not including \(w_1 \).
In this example:

- The truth is an optimal strategy for any coalition not including w_1.
- No strategy for w_1 is better than the truth if all other women respond optimally to it.
When a Lie Need Not be Optimal (cont.)

In this example:

- The truth is an optimal strategy for any coalition not including \(w_1 \).
- No strategy for \(w_1 \) is better than the truth if all other women respond optimally to it.
- Thus, in no Nash equilibrium is any woman better-matched than according to all the true preferences.
When a Lie Need Not be Optimal (cont.)

In this example:

- The truth is an optimal strategy for any coalition not including w_1.

- No strategy for w_1 is better than the truth if all other women respond optimally to it.

- Thus, in no Nash equilibrium is any woman better-matched than according to all the true preferences.

- There exists a strategy for w_1 and w_2 that is better for both than the truth, but which is out-of-equilibrium due to w_2 lying suboptimally.
An Easy Proof? Take II

Roth (private communication, Dec. 2007)

1. If women can do better than to state their true preferences, they can do so by truncating their preferences.
2. Truncating preferences is the opposite of extending preferences.
3. When any woman extends her preferences, it harms the other women.
An Easy Proof? Take II

Roth (private communication, Dec. 2007)

1. If women can do better than to state their true preferences, they can do so by truncating their preferences.
2. Truncating preferences is the opposite of extending preferences.
3. When any woman extends her preferences, it harms the other women.

But this still proves only the optimal lie case...
Roth (private communication, Dec. 2007)

1. If women can do better than to state their true preferences, they can do so by truncating their preferences.
2. Truncating preferences is the opposite of extending preferences.
3. When any woman extends her preferences, it harms the other women.

But this still proves only the optimal lie case... (Indeed, w_2's lie from the previous example is not equivalent to any truncation of her preferences.)
A Make-Believe Proof

Definition (Rejecter)

A woman $w \in W$ is said to be a rejecter if she rejects $N(w)$ on some night during OA. Denote that night by $T(w)$, and the man who serenades under w’s window on that night, but whom she does not reject then — $B(w)$.
Definition (Rejecter)

A woman $w \in W$ is said to be a rejecter if she rejects $N(w)$ on some night during OA. Denote that night by $T(w)$, and the man who serenades under w’s window on that night, but whom she does not reject then — $B(w)$.

1. $w \in W$ is worse off $\Rightarrow O(w)$ is better off.
A Make-Believe Proof

Definition (Rejecter)

A woman \(w \in W \) is said to be a rejecter if she rejects \(N(w) \) on some night during \(OA \). Denote that night by \(T(w) \), and the man who serenades under \(w \)'s window on that night, but whom she does not reject then — \(B(w) \).

1. \(w \in W \) is worse off \(\Rightarrow \) \(O(w) \) is better off.
2. \(m \in M \) is better off \(\Rightarrow \) \(N(m) \) is a rejecter.
A Make-Believe Proof

Definition (Rejecter)

A woman $w \in W$ is said to be a rejecter if she rejects $N(w)$ on some night during OA. Denote that night by $T(w)$, and the man who serenades under w’s window on that night, but whom she does not reject then — $B(w)$.

1. $w \in W$ is worse off \Rightarrow $O(w)$ is better off.
2. $m \in M$ is better off \Rightarrow $N(m)$ is a rejecter.
3. $w \in W$ is a rejecter \Rightarrow w is worse off.
A Make-Believe Proof

Definition (Rejecter)

A woman $w \in W$ is said to be a rejecter if she rejects $N(w)$ on some night during OA. Denote that night by $T(w)$, and the man who serenades under w’s window on that night, but whom she does not reject then — $B(w)$.

1. $w \in W$ is worse off $\Rightarrow O(w)$ is better off.
2. $m \in M$ is better off $\Rightarrow N(m)$ is a rejecter.
3. $w \in W$ is a rejecter $\Rightarrow w$ is worse off.
4. $w \in W$ is a rejecter $\Rightarrow B(w)$ prefers $N(B(w))$ over w.
A Make-Believe Proof

Definition (Rejecter)

A woman $w \in W$ is said to be a rejecter if she rejects $N(w)$ on some night during OA. Denote that night by $T(w)$, and the man who serenades under w’s window on that night, but whom she does not reject then — $B(w)$.

1. $w \in W$ is worse off $\Rightarrow O(w)$ is better off.
2. $m \in M$ is better off $\Rightarrow N(m)$ is a rejecter.
3. $w \in W$ is a rejecter $\Rightarrow w$ is worse off.
4. $w \in W$ is a rejecter $\Rightarrow B(w)$ prefers $N(B(w))$ over w.
5. $w \in W$ is a rejecter \Rightarrow
 i. $N(B(w))$ is a rejecter.
 ii. $T(w) > T(N(B(w)))$.

Yannai A. Gonczarowski (HUJI)
Sisterhood in the Gale-Shapley Matching Algorithm
June 3, 2013 11 / 18
Connecting the Dots

1. \(w \in W \) is worse off \(\Rightarrow O(w) \) is better off.
2. \(m \in M \) is better off \(\Rightarrow N(m) \) is a rejecter.
3. \(w \in W \) is a rejecter \(\Rightarrow \)

 i. \(N(B(w)) \) is a rejecter.

 ii. \(T(w) > T(N(B(w))) \).

Assume some part does not hold
Connecting the Dots

1. $w \in W$ is worse off $\Rightarrow O(w)$ is better off.
2. $m \in M$ is better off $\Rightarrow N(m)$ is a rejecter.
3. $w \in W$ is a rejecter \Rightarrow
 i. $N(B(w))$ is a rejecter.
 ii. $T(w) > T(N(B(w)))$.

Assume some part does not hold \Rightarrow there exists a rejecter w_1.
Connecting the Dots

1. $w \in W$ is worse off $\Rightarrow O(w)$ is better off.
2. $m \in M$ is better off $\Rightarrow N(m)$ is a rejecter.
3. $w \in W$ is a rejecter \Rightarrow
 i. $N(B(w))$ is a rejecter.
 ii. $T(w) > T(N(B(w)))$.

Assume some part does not hold \Rightarrow there exists a rejecter w_1.

$$w_2 = N(B(w_1))$$
Connecting the Dots

1. \(w \in W \) is worse off \(\Rightarrow O(w) \) is better off.
2. \(m \in M \) is better off \(\Rightarrow N(m) \) is a rejecter.
3. \(w \in W \) is a rejecter \(\Rightarrow \)
 - i. \(N(B(w)) \) is a rejecter.
 - ii. \(T(w) > T(N(B(w))) \).

Assume some part does not hold \(\Rightarrow \) there exists a rejecter \(w_1 \).

\[
\begin{align*}
 w_2 &= N(B(w_1)) \\
 w_3 &= N(B(w_2))
\end{align*}
\]
Connecting the Dots

1. \(w \in W \) is worse off \(\Rightarrow \) \(O(w) \) is better off.
2. \(m \in M \) is better off \(\Rightarrow \) \(N(m) \) is a rejecter.
3. \(w \in W \) is a rejecter \(\Rightarrow \)
 i. \(N(B(w)) \) is a rejecter.
 ii. \(T(w) > T(N(B(w))) \).

Assume some part does not hold \(\Rightarrow \) there exists a rejecter \(w_1 \).

\[
\begin{align*}
 w_2 & = N(B(w_1)) \\
 w_3 & = N(B(w_2)) \\
 & \vdots \\
 w_{i-2} & = N(B(w_{i-3})) \\
 w_{i-1} & = N(B(w_{i-2})) \\
 w_i & = N(B(w_{i-1}))
\end{align*}
\]
Connecting the Dots

1. \(w \in W \) is worse off \(\Rightarrow \) \(O(w) \) is better off.
2. \(m \in M \) is better off \(\Rightarrow \) \(N(m) \) is a rejecter.
3. \(w \in W \) is a rejecter \(\Rightarrow \)
 i. \(N(B(w)) \) is a rejecter.
 ii. \(T(w) > T(N(B(w))) \).

Assume some part does not hold \(\Rightarrow \) there exists a rejecter \(w_1 \).

\[
\begin{align*}
w_2 & = N(B(w_1)) \\
w_3 & = N(B(w_2)) \\
& \vdots \\
w_{i-2} & = N(B(w_{i-3})) \\
w_{i-1} & = N(B(w_{i-2})) \\
w_j & = w_i = N(B(w_{i-1})) \quad \text{for } j < i
\end{align*}
\]
Connecting the Dots

1. \(w \in W \) is worse off \(\Rightarrow O(w) \) is better off.
2. \(m \in M \) is better off \(\Rightarrow N(m) \) is a rejecter.
3. \(w \in W \) is a rejecter \(\Rightarrow \)
 i) \(N(B(w)) \) is a rejecter.
 ii) \(T(w) > T(N(B(w))) \).

Assume some part does not hold \(\Rightarrow \) there exists a rejecter \(w_1 \).

\[
\begin{align*}
 w_2 &= N(B(w_1)) \\
 w_3 &= N(B(w_2)) \\
 &\vdots \\
 w_{i-2} &= N(B(w_{i-3})) \\
 w_{i-1} &= N(B(w_{i-2})) \\
 w_j &= w_i = N(B(w_{i-1})) \quad \text{for } j < i
\end{align*}
\]
One-To-Many and Many-To-Many Matchings

- What's better off?
- What's worse off?
- We still assume total preferences over individuals.
- For a person p, denote $O(p) = (o_{p1}, \ldots, o_{pn_p})$ and $N(p) = (n_{p1}, \ldots, n_{pn_p})$. Lower index = higher on p's list.

Definition (Improvement)
A person p is said to be weakly better off if for each $1 \leq i \leq n_p$, p weakly prefers n_{pi} over o_{pi}.

Definition (Worsening)
A person p is said to have gained only worse matches if p prefers every member of $O(p)$ over every member of $N(p) \setminus O(p)$.

By Gusfield and Irving (1989): These are dual total orders over equivalence classes of stable matchings.
One-To-Many and Many-To-Many Matchings

- What’s better off?
- What’s worse off?

Definition (Improvement)
A person p is said to be weakly better off if for each $1 \leq i \leq n_p$, p weakly prefers $n_p[i]$ over $o_p[i]$.

Definition (Worsening)
A person p is said to have gained only worse matches if p prefers every member of $O(p)$ over every member of $N(p) \setminus O(p)$.

By Gusfield and Irving (1989): These are dual total orders over equivalence classes of stable matchings.
One-To-Many and Many-To-Many Matchings

- What’s better off?
- What’s worse off?

- We still assume total preferences over individuals.
- For a person p, denote $O(p) = (o_{1}^{p}, \ldots, o_{n_{p}}^{p})$ and $N(p) = (n_{1}^{p}, \ldots, n_{n_{p}}^{p})$. Lower index $=$ higher on p’s list.

Definition (Improvement)
A person p is said to be weakly better off if for each $1 \leq i \leq n_{p}$, p weakly prefers n_{i}^{p} over o_{i}^{p}.

Definition (Worsening)
A person p is said to have gained only worse matches if p prefers every member of $O(p)$ over every member of $N(p) \setminus O(p)$.

By Gusfield and Irving (1989): These are dual total orders over equivalence classes of stable matchings.
One-To-Many and Many-To-Many Matchings

- What’s better off?
- What’s worse off?

- We still assume total preferences over individuals.
- For a person \(p \), denote \(O(p) = (o_1^p, \ldots, o_{n_p}^p) \) and \(N(p) = (n_1^p, \ldots, n_{n_p}^p) \). Lower index = higher on \(p \)'s list.

Definition (Improvement)

A person \(p \) is said to be weakly better off if for each \(1 \leq i \leq n_p \), \(p \) weakly prefers \(n_i^p \) over \(o_i^p \).
One-To-Many and Many-To-Many Matchings

- What’s better off?
- What’s worse off?

- We still assume total preferences over individuals.
- For a person p, denote $O(p) = (o_1^p, \ldots, o_{n_p}^p)$ and $N(p) = (n_1^p, \ldots, n_{n_p}^p)$. Lower index $= higher on p’s list.$

Definition (Improvement)
A person p is said to be *weakly better off* if for each $1 \leq i \leq n_p$, p weakly prefers n_i^p over o_i^p.

Definition (Worsening)
A person p is said to have *gained only worse matches* if p prefers every member of $O(p)$ over every member of $N(p) \setminus O(p)$.
One-To-Many and Many-To-Many Matchings

- What’s better off?
- What’s worse off?

- We still assume total preferences over individuals.
- For a person p, denote $O(p) = (o^p_1, \ldots, o^p_{n_p})$ and $N(p) = (n^p_1, \ldots, n^p_{n_p})$. Lower index $=$ higher on p’s list.

Definition (Improvement)
A person p is said to be weakly better off if for each $1 \leq i \leq n_p$, p weakly prefers n^p_i over o^p_i.

Definition (Worsening)
A person p is said to have gained only worse matches if p prefers every member of $O(p)$ over every member of $N(p) \setminus O(p)$.

By Gusfield and Irving (1989): These are dual total orders over equivalence classes of stable matchings.
Sisterhood Theorem — Polygamous Case

Theorem (Sisterhood)

If all lying women are weakly better off, then:

1. All women are weakly better off.
2. All men have gained only worse matches.
Theorem (Sisterhood)

If all lying women are weakly better off, then:

1. All women are weakly better off.
2. All men have gained only worse matches.

- A reduction proof works only when men are monogamous.
Sisterhood Theorem — Polygamous Case

Theorem (Sisterhood)

If all lying women are weakly better off, then:
1. All women are weakly better off.
2. All men have gained only worse matches.

- A reduction proof works only when men are monogamous.
- Otherwise, we must revisit the proof.
Adapting the Proof

Definition (Rejecter)

A woman w is said to be a rejecter if she rejects $N(w)$ during OA.

1. $w \in W$ is worse off $\Rightarrow O(w)$ is better off.
2. $m \in M$ is better off $\Rightarrow N(m)$ is a rejecter.
3. $w \in W$ is a rejecter $\Rightarrow w$ is worse off.
4. $w \in W$ is a rejecter \Rightarrow

 i. $B(w)$ prefers $N(B(w))$ over w.

 ii. $T(w) > T(N(B(w)))$.

5. $w \in W$ is a rejecter \Rightarrow

 i. $N(B(w))$ is a rejecter.

 ii. $T(w) > T(N(B(w)))$.
Adapting the Proof

Definition (Rejecter / Rejectee)

A woman \(w\) is said to be a rejecter if she rejects any of \(N(w)\) during OA. Denote the set of all such rejected members of \(N(w)\) by \(R(w)\). A man \(m\) is said to be a rejectee if there exists a rejecter \(w \in N(m)\) such that \(m \in R(w)\).

1. \(w \in W\) is worse off \(\Rightarrow\) \(O(w)\) is better off.
2. \(m \in M\) is better off \(\Rightarrow\) \(N(m)\) is a rejecter.
3. \(w \in W\) is a rejecter \(\Rightarrow\) \(w\) is worse off.
4. \(w \in W\) is a rejecter \(\Rightarrow\)
 - \(B(w)\) prefers \(N(B(w))\) over \(w\).
5. \(w \in W\) is a rejecter \(\Rightarrow\)
 - \(N(B(w))\) is a rejecter.
 - \(T(w) > T(N(B(w)))\).
Adapting the Proof

Definition (Rejecter / Rejectee)

A woman \(w \) is said to be a rejecter if she rejects any of \(N(w) \) during \(OA \). Denote the set of all such rejected members of \(N(w) \) by \(R(w) \). A man \(m \) is said to be a rejectee if there exists a rejecter \(w \in N(m) \) such that \(m \in R(w) \).

1. \(w \in W \) is worse off \(\implies \) \(O(w) \) is better off.
2. \(m \in M \) is better off \(\implies \) \(N(m) \) is a rejecter.
3. \(w \in W \) is a rejecter \(\implies \) \(w \) is worse off.
4. \(w \in W \) is a rejecter \(\implies \)

 i. \(B(w) \) prefers \(N(B(w)) \) over \(w \).

 ii. \(T(w) > T(N(B(w))) \).
5. \(w \in W \) is a rejecter \(\implies \)

 i. \(N(B(w)) \) is a rejecter.

 ii. \(T(w) > T(N(B(w)) \). \)
Adapting the Proof

Definition (Rejecter / Rejectee)

A woman w is said to be a rejecter if she rejects any of $N(w)$ during OA. Denote the set of all such rejected members of $N(w)$ by $R(w)$. A man m is said to be a rejectee if there exists a rejecter $w \in N(m)$ such that $m \in R(w)$.

1. $w \in W$ isn’t weakly b/o \Rightarrow $O(w)$ is better off.
2. $m \in M$ is better off \Rightarrow $N(m)$ is a rejecter.
3. $w \in W$ is a rejecter \Rightarrow w is worse off.
4. $w \in W$ is a rejecter \Rightarrow

 i. $B(w)$ prefers $N(B(w))$ over w.
 ii. $B(w)$ prefers $N(B(w))$ over w.

5. $w \in W$ is a rejecter \Rightarrow

 i. $N(B(w))$ is a rejecter.
 ii. $T(w) > T(N(B(w)))$.

Yannai A. Gonczarowski (HUJI)
Sisterhood in the Gale-Shapley Matching Algorithm
June 3, 2013
15 / 18
Adapting the Proof

Definition (Rejecter / Rejectee)

A woman \(w \) is said to be a rejecter if she rejects any of \(N(w) \) during OA. Denote the set of all such rejected members of \(N(w) \) by \(R(w) \). A man \(m \) is said to be a rejectee if there exists a rejecter \(w \in N(m) \) such that \(m \in R(w) \).

1. \(w \in W \) isn’t weakly b/o \(\Rightarrow \exists m \in O(w) \) who hasn’t g.o.w.m.
2. \(m \in M \) is better off \(\Rightarrow \) \(N(m) \) is a rejecter.
3. \(w \in W \) is a rejecter \(\Rightarrow \) \(w \) is worse off.
4. \(w \in W \) is a rejecter \(\Rightarrow \)
 - \(B(w) \) prefers \(N(B(w)) \) over \(w \).
5. \(w \in W \) is a rejecter \(\Rightarrow \)
 - \(N(B(w)) \) is a rejecter.
 - \(T(w) > T(N(B(w))) \).
Adapting the Proof

Definition (Rejecter / Rejectee)

A woman w is said to be a rejecter if she rejects any of $N(w)$ during OA. Denote the set of all such rejected members of $N(w)$ by $R(w)$. A man m is said to be a rejectee if there exists a rejecter $w \in N(m)$ such that $m \in R(w)$.

1. $w \in W$ isn't weakly b/o $\Rightarrow \exists m \in O(w)$ who hasn't g.o.w.m.
2. $m \in M$ is better off $\Rightarrow N(m)$ is a rejecter.
3. $w \in W$ is a rejecter $\Rightarrow w$ is worse off.
4. $w \in W$ is a rejecter \Rightarrow

 i. $B(w)$ prefers $N(B(w))$ over w.

 ii. $T(w) > T(N(B(w)))$.
5. $w \in W$ is a rejecter \Rightarrow

 i. $N(B(w))$ is a rejecter.

 ii. $T(w) > T(N(B(w)))$.

Adapting the Proof

Definition (Rejecter / Rejectee)

A woman w is said to be a rejecter if she rejects any of $N(w)$ during OA. Denote the set of all such rejected members of $N(w)$ by $R(w)$. A man m is said to be a rejectee if there exists a rejecter $w \in N(m)$ such that $m \in R(w)$.

1. $w \in W$ isn’t weakly b/o $\Rightarrow \exists m \in O(w)$ who hasn’t g.o.w.m.
2. $m \in M$ hasn’t g.o.w.m. $\Rightarrow N(m)$ is a rejecter.
3. $w \in W$ is a rejecter $\Rightarrow w$ is worse off.
4. $w \in W$ is a rejecter \Rightarrow

 ii. $B(w)$ prefers $N(B(w))$ over w.

5. $w \in W$ is a rejecter \Rightarrow

 i. $N(B(w))$ is a rejecter.

 ii. $T(w) > T(N(B(w)))$.
Adapting the Proof

Definition (Rejecter / Rejectee)

A woman \(w \) is said to be a rejecter if she rejects any of \(N(w) \) during \(OA \). Denote the set of all such rejected members of \(N(w) \) by \(R(w) \). A man \(m \) is said to be a rejectee if there exists a rejecter \(w \in N(m) \) such that \(m \in R(w) \).

1. \(w \in W \) isn’t weakly b/o \(\Rightarrow \exists m \in O(w) \) who hasn’t g.o.w.m.
2. \(m \in M \) hasn’t g.o.w.m. \(\Rightarrow m \) is a rejectee.
3. \(w \in W \) is a rejecter \(\Rightarrow \) \(w \) is worse off.
4. \(w \in W \) is a rejecter \(\Rightarrow \)
 - \(N(B(w)) \) is a rejecter.
 - \(\exists w' \in W \) s.t. \(T(w') > T(N(B(w))) \).
5. \(w \in W \) is a rejecter \(\Rightarrow \)
 - \(B(w) \) prefers \(N(B(w)) \) over \(w \).
Adapting the Proof

Definition (Rejecter / Rejectee)

A woman \(w \) is said to be a *rejecter* if she rejects *any* of \(N(w) \) during \(OA \). Denote the set of all such rejected members of \(N(w) \) by \(R(w) \). A man \(m \) is said to be a *rejectee* if there exists a rejecter \(w \in N(m) \) such that \(m \in R(w) \).

1. \(w \in W \) isn’t weakly b/o \(\Rightarrow \exists m \in O(w) \) who hasn’t g.o.w.m.
2. \(m \in M \) hasn’t g.o.w.m. \(\Rightarrow m \) is a rejectee.
3. \(w \in W \) is a rejecter \(\Rightarrow w \) is worse off.
4. \(w \in W \) is a rejecter \(\Rightarrow \\
 \qquad \text{i} \quad B(w) \) prefers \(N(B(w)) \) over \(w \).
5. \(w \in W \) is a rejecter \(\Rightarrow \\
 \qquad \text{i} \quad N(B(w)) \) is a rejecter.
 \qquad \text{ii} \quad T(w) > T(N(B(w))).
Adapting the Proof

Definition (Rejecter / Rejectee)

A woman w is said to be a rejecter if she rejects any of $N(w)$ during OA. Denote the set of all such rejected members of $N(w)$ by $R(w)$. A man m is said to be a rejectee if there exists a rejecter $w \in N(m)$ such that $m \in R(w)$.

1. $w \in W$ isn’t weakly b/o $\Rightarrow \exists m \in O(w)$ who hasn’t g.o.w.m.
2. $m \in M$ hasn’t g.o.w.m. $\Rightarrow m$ is a rejectee.
3. $w \in W$ is a rejecter $\Rightarrow w$ is not weakly better off.
4. $w \in W$ is a rejecter \Rightarrow
 i. $B(w)$ prefers $N(B(w))$ over w.
 ii. $N(B(w))$ is a rejecter.
5. $w \in W$ is a rejecter \Rightarrow
 i. w is a rejecter.
 ii. $T(w) > T(N(B(w)))$.
Adapting the Proof

Definition (Rejecter / Rejectee)

A woman w is said to be a rejecter if she rejects any of $N(w)$ during OA. Denote the set of all such rejected members of $N(w)$ by $R(w)$. A man m is said to be a rejectee if there exists a rejecter $w \in N(m)$ such that $m \in R(w)$.

1. $w \in W$ isn’t weakly b/o $\Rightarrow \exists m \in O(w)$ who hasn’t g.o.w.m.
2. $m \in M$ hasn’t g.o.w.m. $\Rightarrow m$ is a rejectee.
3. $w \in W$ is a rejecter \Rightarrow w is not weakly better off.
4. $w \in W$ is a rejecter \Rightarrow

 ii. $B(w)$ prefers $N(B(w))$ over w.

5. $w \in W$ is a rejecter \Rightarrow

 i. $N(B(w))$ is a rejecter.
 ii. $T(w) > T(N(B(w)))$.
Adapting the Proof

Definition (Rejecter / Rejectee)

A woman \(w \) is said to be a rejecter if she rejects any of \(N(w) \) during OA. Denote the set of all such rejected members of \(N(w) \) by \(R(w) \). A man \(m \) is said to be a rejectee if there exists a rejecter \(w \in N(m) \) such that \(m \in R(w) \).

1. \(w \in W \) isn’t weakly b/o \(\Rightarrow \exists m \in O(w) \) who hasn’t g.o.w.m.
2. \(m \in M \) hasn’t g.o.w.m. \(\Rightarrow m \) is a rejectee.
3. \(w \in W \) is a rejecter \(\Rightarrow \) \(w \) is not weakly better off.
4. \(w \in W \) is a rejecter \(\Rightarrow \forall r \in R(w) \exists B(w, r) \) s.t.
 i. \(B(w, r) \) serenades under \(w \)’s window during OA on the night on which she rejects \(r \), but is not rejected then.
 ii. \(B(w, r) \) prefers all of \(N(B(w, r)) \) over \(w \).
5. \(w \in W \) is a rejecter \(\Rightarrow \)
 i. \(N(B(w)) \) is a rejecter.
 ii. \(T(w) > T(N(B(w))) \).
Adapting the Proof

Definition (Rejecter / Rejectee)

A woman \(w \) is said to be a **rejecter** if she rejects any of \(N(w) \) during \(OA \). Denote the set of all such rejected members of \(N(w) \) by \(R(w) \). A man \(m \) is said to be a **rejectee** if there exists a rejecter \(w \in N(m) \) such that \(m \in R(w) \).

1. \(w \in W \) isn’t weakly b/o \(\Leftrightarrow \exists m \in O(w) \) who hasn’t g.o.w.m.
2. \(m \in M \) hasn’t g.o.w.m. \(\Rightarrow m \) is a rejectee.
3. \(w \in W \) is a rejecter \(\Rightarrow w \) is not weakly better off.
4. \(w \in W \) is a rejecter \(\Rightarrow \forall r \in R(w) \exists B(w, r) \) s.t.
 i. \(B(w, r) \) serenades under \(w \)’s window during \(OA \) on the night on which she rejects \(r \), but is not rejected then.
 ii. \(B(w, r) \) prefers all of \(N(B(w, r)) \) over \(w \).
5. \(w \in W \) is a rejecter \(\Rightarrow \)
 i. \(N(B(w)) \) is a rejecter.
 ii. \(T(w) \geq T(N(B(w))) \).
Adapting the Proof

Definition (Rejecter / Rejectee)

A woman w is said to be a rejecter if she rejects any of $N(w)$ during OA. Denote the set of all such rejected members of $N(w)$ by $R(w)$. A man m is said to be a rejectee if there exists a rejecter $w \in N(m)$ such that $m \in R(w)$.

1. $w \in W$ isn’t weakly b/o $\Rightarrow \exists m \in O(w)$ who hasn’t g.o.w.m.
2. $m \in M$ hasn’t g.o.w.m. $\Rightarrow m$ is a rejectee.
3. $w \in W$ is a rejecter $\Rightarrow w$ is not weakly better off.
4. $w \in W$ is a rejecter $\Rightarrow \forall r \in R(w) \exists B(w, r)$ s.t.
 i. $B(w, r)$ serenades under w’s window during OA on the night on which she rejects r, but is not rejected then.
 ii. $B(w, r)$ prefers all of $N(B(w, r))$ over w.
5. $w \in W$ is a rejecter $\Rightarrow \forall r \in R(w)$:
 i. $N(B(w, r))$ is a rejecter.
 ii. $T(w) > T(N(B(w)))$.
Adapting the Proof

Definition (Rejecter / Rejectee)

A woman \(w \) is said to be a **rejecter** if she rejects any of \(N(w) \) during \(OA \). Denote the set of all such rejected members of \(N(w) \) by \(R(w) \). A man \(m \) is said to be a **rejectee** if there exists a rejecter \(w \in N(m) \) such that \(m \in R(w) \).

1. \(w \in W \) isn’t weakly b/o \(\Rightarrow \exists m \in O(w) \) who hasn’t g.o.w.m.
2. \(m \in M \) hasn’t g.o.w.m. \(\Rightarrow m \) is a rejectee.
3. \(w \in W \) is a rejecter \(\Rightarrow w \) is not weakly better off.
4. \(w \in W \) is a rejecter \(\Rightarrow \forall r \in R(w) \exists B(w, r) \) s.t.
 i. \(B(w, r) \) serenades under \(w \)’s window during \(OA \) on the night on which she rejects \(r \), but is not rejected then.
 ii. \(B(w, r) \) prefers all of \(N(B(w, r)) \) over \(w \).
5. \(w \in W \) is a rejecter \(\Rightarrow \forall r \in R(w) \):
 i. \(\exists \tilde{w} \in N(B(w, r)) \) who is a rejecter and \(B(w, r) \in R(\tilde{w}) \).
 ii. \(T(w) > T(N(B(w))) \).
Adapting the Proof

Definition (Rejecter / Rejectee)

A woman w is said to be a rejecter if she rejects any of $N(w)$ during OA. Denote the set of all such rejected members of $N(w)$ by $R(w)$. A man m is said to be a rejectee if there exists a rejecter $w \in N(m)$ such that $m \in R(w)$.

1. $w \in W$ isn’t weakly b/o $\Rightarrow \exists m \in O(w)$ who hasn’t g.o.w.m.
2. $m \in M$ hasn’t g.o.w.m. $\Rightarrow m$ is a rejectee.
3. $w \in W$ is a rejecter $\Rightarrow w$ is not weakly better off.
4. $w \in W$ is a rejecter $\Rightarrow \forall r \in R(w) \exists B(w, r)$ s.t.
 i. $B(w, r)$ serenades under w’s window during OA on the night on which she rejects r, but is not rejected then.
 ii. $B(w, r)$ prefers all of $N(B(w, r))$ over w.
5. $w \in W$ is a rejecter $\Rightarrow \forall r \in R(w)$:
 i. $\exists \tilde{w} \in N(B(w, r))$ who is a rejecter and $B(w, r) \in R(\tilde{w})$.
 ii. $T(w, r) > T(N(B(w)))$.
Adapting the Proof

Definition (Rejecter / Rejectee)

A woman \(w \) is said to be a rejecter if she rejects any of \(N(w) \) during \(OA \). Denote the set of all such rejected members of \(N(w) \) by \(R(w) \). A man \(m \) is said to be a rejectee if there exists a rejecter \(w \in N(m) \) such that \(m \in R(w) \).

1. \(w \in W \) isn’t weakly b/o \(\Rightarrow \exists m \in O(w) \) who hasn’t g.o.w.m.
2. \(m \in M \) hasn’t g.o.w.m. \(\Rightarrow m \) is a rejectee.
3. \(w \in W \) is a rejecter \(\Rightarrow w \) is not weakly better off.
4. \(w \in W \) is a rejecter \(\Rightarrow \forall r \in R(w) \exists B(w, r) \) s.t.
 i. \(B(w, r) \) serenades under \(w \)’s window during \(OA \) on the night on which she rejects \(r \), but is not rejected then.
 ii. \(B(w, r) \) prefers all of \(N(B(w, r)) \) over \(w \).
5. \(w \in W \) is a rejecter \(\Rightarrow \forall r \in R(w) \):
 i. \(\exists \tilde{w} \in N(B(w, r)) \) who is a rejecter and \(B(w, r) \in R(\tilde{w}) \).
 ii. \(T(w, r) > T(\tilde{w}, B(w, r)) \).
Blacklists and Mismatched Quotas

The Sisterhood theorem still holds under the following definitions: (Proof by reduction to the previous case.)

Definition (Improvement)
A person p is said to be weakly better off if:
1. $|N(p)|$ contains no-one who is blacklisted by p.
2. $|N(p)| \geq |O(p)|$.
3. For each $1 \leq i \leq |O(p)|$, p weakly prefers n_p_i over o_p_i.

Definition of Worsening is Unchanged
A person p is said to have gained only worse matches if p prefers every member of $O(p)$ over every member of $N(p) \setminus O(p)$.

(∗Does not require $|N(p)| \leq |O(p)|$, but equality will follow.)
The Sisterhood theorem still holds under the following definitions: (Proof by reduction to the previous case.)

Definition (Improvement)

A person p is said to be *weakly better off* if:

1. $N(p)$ contains no-one who is blacklisted by p.
2. $|N(p)| \geq |O(p)|$.
3. For each $1 \leq i \leq O(p)$, p weakly prefers n_i^p over o_i^p.
Blacklists and Mismatched Quotas

The Sisterhood theorem still holds under the following definitions: (Proof by reduction to the previous case.)

Definition (Improvement)

A person p is said to be weakly better off if:

1. $N(p)$ contains no-one who is blacklisted by p.
2. $|N(p)| \geq |O(p)|$.
3. For each $1 \leq i \leq O(p)$, p weakly prefers n_i^p over o_i^p.

Definition of Worsening is Unchanged

A person p is said to have gained only worse matches if p prefers every member of $O(p)$ over every member of $N(p) \setminus O(p)$.
Blacklists and Mismatched Quotas

The Sisterhood theorem still holds under the following definitions: (Proof by reduction to the previous case.)

Definition (Improvement)

A person p is said to be weakly better off if:

1. $N(p)$ contains no-one who is blacklisted by p.
2. $|N(p)| \geq |O(p)|$. (*The theorem will imply equality here.)
3. For each $1 \leq i \leq O(p)$, p weakly prefers n_i^p over o_i^p.

Definition of Worsening is Unchanged

A person p is said to have gained only worse matches if p prefers every member of $O(p)$ over every member of $N(p) \setminus O(p)$. (*Does not require $|N(p)| \leq |O(p)|$, but equality will follow.)
A Few Sample Corollaries

Under the above conditions,

$$1 | N(p) | = | O(p) |$$

for each person $$p \in W \cup M$$.

For an innocent person $$p$$, if $$| N(p) | < n_p$$, then $$N(p) = O(p)$$.

Corollary

If $$| L | = 1$$, and the lying woman is (strictly) better off, then so is some innocent woman.

Corollary

If all women have the same order of preference, then under the above conditions the matching must remain unchanged. Therefore, in this case there is no "significant" incentive for any subset of women to lie, even for the sake of one of them.
A Few Sample Corollaries

A Rural-Hospitals-type Theorem

Under the above conditions,

1. \(|N(p)| = |O(p)|\) for each person \(p \in W \cup M\).

2. For an innocent person \(p\), if \(|N(p)| < n_p\), then \(N(p) = O(p)\).
A Few Sample Corollaries

A Rural-Hospitals-type Theorem

Under the above conditions,
1. $|N(p)| = |O(p)|$ for each person $p \in W \cup M$.
2. For an innocent person p, if $|N(p)| < n_p$, then $N(p) = O(p)$.

Corollary

If $|L| = 1$, and the lying woman is (strictly) better off, then so is some innocent woman.
A Few Sample Corollaries

A Rural-Hospitals-type Theorem

Under the above conditions,

1. $|N(p)| = |O(p)|$ for each person $p \in W \cup M$.
2. For an innocent person p, if $|N(p)| < n_p$, then $N(p) = O(p)$.

Corollary

If $|L| = 1$, and the lying woman is (strictly) better off, then so is some innocent woman.

Corollary

If all women have the same order of preference, then under the above conditions the matching must remain unchanged. Therefore, in this case there is no “significant” incentive for any subset of women to lie, even for the sake of one of them.
Questions?

Thank you!