Manipulation of Stable Matchings using Minimal Blacklists

Yannai A. Gonczarowski

The Hebrew University of Jerusalem
Microsoft Research

July 29, 2014

The Stable Matching Problem (Gale&Shapley 1962)

- Two disjoint finite sets: women W and men M.
- One-to-one.
- Assume $|W| = |M|$ for now.
- A preferences list for each woman and for each man.
- Strictly ordered.
- The blacklist is the set of those not on the preference list.
- The goal: a stable matching.
- M-rational: No man is matched with a woman from his blacklist.
- W-rational: No woman is matched with a man from her blacklist.
- If w and m are not matched, then at least one of them prefers their spouse (or lack thereof) over the other.

Roth (2002) "Successful matching mechanisms produce stable outcomes."
The Stable Matching Problem (Gale&Shapley 1962)

- Two disjoint finite sets: women \(W \) and men \(M \).
 - One-to-one.
 - Assume \(|W| = |M| \) for now.

Roth (2002)

"Successful matching mechanisms produce stable outcomes."
The Stable Matching Problem (Gale&Shapley 1962)

- Two disjoint finite sets: women W and men M.
 - One-to-one.
 - Assume $|W| = |M|$ for now.

- A preferences list for each woman and for each man.
 - Strictly ordered.
 - The blacklist is the set of those not on the preference list.
The Stable Matching Problem (Gale&Shapley 1962)

- Two disjoint finite sets: women W and men M.
 - One-to-one.
 - Assume $|W| = |M|$ for now.

- A preferences list for each woman and for each man.
 - Strictly ordered.
 - The blacklist is the set of those not on the preference list.

- The goal: a stable matching.
 - M-rational: No man is matched with a woman from his blacklist.
 - W-rational: No woman is matched with a man from her blacklist.
 - If w and m are not matched, then at least one of them prefers their spouse (or lack thereof) over the other.
The Stable Matching Problem (Gale&Shapley 1962)

- Two disjoint finite sets: women W and men M.
 - One-to-one.
 - Assume $|W| = |M|$ for now.

- A preferences list for each woman and for each man.
 - Strictly ordered.
 - The blacklist is the set of those not on the preference list.

- The goal: a stable matching.
 - M-rational: No man is matched with a woman from his blacklist.
 - W-rational: No woman is matched with a man from her blacklist.
 - If w and m are not matched, then at least one of them prefers their spouse (or lack thereof) over the other.

Roth (2002)

“Successful matching mechanisms produce stable outcomes.”
Gale-Shapley and M-Optimality

Gale and Shapley (1962)
A stable matching exists for every profile of preference lists.
An efficient algorithm for finding the (unique) M-optimal one.

McVitie and Wilson (1971)
The M-optimal stable matching = the W-worst stable matching.

Dubins and Freedman (1981)
No man can gain from unilaterally manipulating the M-optimal stable matching.

Gale and Sotomayor (1985)
Generally, there is a woman who would be better off lying when the M-optimal stable matching is used.
Gale-Shapley and M-Optimality

Gale and Shapley (1962)

A stable matching exists for every profile of preference lists.
Gale-Shapley and M-Optimality

Gale and Shapley (1962)

A stable matching exists for every profile of preference lists. An efficient algorithm for finding the (unique) M-optimal one.

McVitie and Wilson (1971)

The M-optimal stable matching = the W-worst stable matching.

Dubins and Freedman (1981)

No man can gain from unilaterally manipulating the M-optimal stable matching.

Gale and Sotomayor (1985)

Generally, there is a woman who would be better off lying when the M-optimal stable matching is used.
Gale-Shapley and M-Optimality

Gale and Shapley (1962)

A stable matching exists for every profile of preference lists. An efficient algorithm for finding the (unique) M-optimal one.

McVitie and Wilson (1971)

The M-optimal stable matching = the W-worst stable matching.
Gale-Shapley and M-Optimality

Gale and Shapley (1962)
A stable matching exists for every profile of preference lists.
An efficient algorithm for finding the (unique) M-optimal one.

McVitie and Wilson (1971)
The M-optimal stable matching = the W-worst stable matching.

Dubins and Freedman (1981)
No man can gain from unilaterally manipulating the M-optimal stable matching.
Gale-Shapley and M-Optimality

Gale and Shapley (1962)
A stable matching exists for every profile of preference lists. An efficient algorithm for finding the (unique) M-optimal one.

McVitie and Wilson (1971)
The M-optimal stable matching $=$ the W-worst stable matching.

Dubins and Freedman (1981)
No man can gain from unilaterally manipulating the M-optimal stable matching.

Gale and Sotomayor (1985)
Generally, there is a woman who would be better off lying when the M-optimal stable matching is used.
Full-Side Manipulation

The coalition of all men can force any \(W \)-rational perfect matching as the \(M \)-optimal stable one. (Distinct top choices.) Gale and Sotomayor (1985)

The coalition of all women can force the \(W \)-optimal stable matching as the \(M \)-optimal one by truncating preference lists.

- Requires blacklists.
- Possibly long blacklists.
- Possibly each of size \(|M|-1\).
- Conspiracy is painfully obvious.

Gusfield and Irving (1989)

No results are known regarding achieving this by any means other than such preference-list truncation, i.e. by also permuting preference lists.
Full-Side Manipulation

The coalition of all men can force any W-rational perfect matching as the M-optimal stable one.
Full-Side Manipulation

The coalition of all men can force any W-rational perfect matching as the M-optimal stable one. (Distinct top choices.)
Full-Side Manipulation

The coalition of all men can force any W-rational perfect matching as the M-optimal stable one. (Distinct top choices.)

Gale and Sotomayor (1985)

The coalition of all women can force the W-optimal stable matching as the M-optimal one by truncating preference lists.
Full-Side Manipulation

The coalition of all men can force any W-rational perfect matching as the M-optimal stable one. (Distinct top choices.)

Gale and Sotomayor (1985)

The coalition of all women can force the W-optimal stable matching as the M-optimal one by truncating preference lists.

- Requires blacklists.
Full-Side Manipulation

The coalition of all men can force any W-rational perfect matching as the M-optimal stable one. (Distinct top choices.)

Gale and Sotomayor (1985)

The coalition of all women can force the W-optimal stable matching as the M-optimal one by *truncating* preference lists.

- Requires blacklists.
- Possibly long blacklists.
Full-Side Manipulation

The coalition of all men can force any W-rational perfect matching as the M-optimal stable one. (Distinct top choices.)

Gale and Sotomayor (1985)

The coalition of all women can force the W-optimal stable matching as the M-optimal one by *truncating* preference lists.

- Requires blacklists.
- Possibly long blacklists.
- Possibly each of size $|M| - 1$.
Full-Side Manipulation

The coalition of all men can force any W-rational perfect matching as the M-optimal stable one. (Distinct top choices.)

Gale and Sotomayor (1985)

The coalition of all women can force the W-optimal stable matching as the M-optimal one by truncating preference lists.

- Requires blacklists.
- Possibly long blacklists.
- Possibly each of size $|M| - 1$.
- Conspiracy is painfully obvious.
Full-Side Manipulation

The coalition of all men can force any W-rational perfect matching as the M-optimal stable one. (Distinct top choices.)

Gale and Sotomayor (1985)

The coalition of all women can force the W-optimal stable matching as the M-optimal one by truncating preference lists.

- Requires blacklists.
- Possibly long blacklists.
- Possibly each of size $|M| - 1$.
- Conspiracy is painfully obvious.

Gusfield and Irving (1989)

No results are known regarding achieving this by any means other than such preference-list truncation, i.e. by also permuting preference lists.
Define $n \triangleq |W| = |M|$. The women may force the W-optimal stable matching as the M-optimal one, using a profile of preference lists with average blacklist size no more than . . .
Define $n \triangleq |W| = |M|$. The women may force the W-optimal stable matching as the M-optimal one, using a profile of preference lists with average blacklist size no more than . . .

1. c
2. $O(\log n)$
3. $O(n^{1/c})$
4. $O\left(\frac{n}{\log n}\right)$
5. $\frac{n}{c}$
6. $n - c$

By truncation
A Short Poll

Define $n \equiv |W| = |M|$. The women may force the W-optimal stable matching as the M-optimal one, using a profile of preferences with average blacklist size no more than . . .

\[
\begin{align*}
1 & \quad c \\
2 & \quad O(\log n) \\
3 & \quad O(n^{1/c}) \\
4 & \quad O\left(\frac{n}{\log n}\right) \\
5 & \quad \frac{n}{c} \\
6 & \quad n - c \\
\uparrow & \quad \text{By truncation}
\end{align*}
\]
A Short Poll

Definition: A women may force the W-optimal stable matching as the M-optimal one, using a profile of preference lists with average blacklist size no more than . . .

\[c \leftarrow O(\log n) \]

\[O\left(\frac{n}{\log n}\right) \]

\[\frac{n}{c} \]

\[n - c \]

By truncation
Answering Gusfield and Irving’s Open Question

Summary of Main Result (Weak Version)

- The women may force any M-rational perfect matching as the unique stable matching, using a profile of preference lists in which at most half of the women have blacklists, and in which the average blacklist size is less than 1.
Answering Gusfield and Irving’s Open Question

Summary of Main Result (Weak Version)

- The women may force any M-rational perfect matching as the unique stable matching, using a profile of preference lists in which at most half of the women have blacklists, and in which the average blacklist size is less than 1. (Compare to each woman having a blacklist size of $|M|-1$.)

- Each of these bounds is tight: it cannot be improved upon.

- This profile of preference lists may be computed efficiently.

- Generally, many such profiles of preference lists exist.

A far more “inconspicuous” manipulation, esp. if preference-list lengths are bounded (e.g. New York High School Match). If women pay a price for every man they blacklist, then order-of-magnitude improvement.
The women may force any M-rational perfect matching as the unique stable matching, using a profile of preference lists in which at most half of the women have blacklists, and in which the average blacklist size is less than 1. (Compare to each woman having a blacklist size of $|M|-1$.)

Each of these bounds is tight: it cannot be improved upon.
Answering Gusfield and Irving’s Open Question

Summary of Main Result (Weak Version)

- The women may force any M-rational perfect matching as the unique stable matching, using a profile of preference lists in which at most half of the women have blacklists, and in which the average blacklist size is less than 1.
 (Compare to each woman having a blacklist size of $|M|-1$.)
- Each of these bounds is tight: it cannot be improved upon.
- This profile of preference lists may be computed efficiently.
Answering Gusfield and Irving’s Open Question

Summary of Main Result (Weak Version)

- The women may force any M-rational perfect matching as the unique stable matching, using a profile of preference lists in which at most half of the women have blacklists, and in which the average blacklist size is less than 1. (Compare to each woman having a blacklist size of $|M|-1$.)
- Each of these bounds is tight: it cannot be improved upon.
- This profile of preference lists may be computed efficiently.
- Generally, many such profiles of preference lists exist.
Answering Gusfield and Irving’s Open Question

Summary of Main Result (Weak Version)

- The women may force any M-rational perfect matching as the unique stable matching, using a profile of preference lists in which at most half of the women have blacklists, and in which the average blacklist size is less than 1. (Compare to each woman having a blacklist size of $|M|-1$.)
- Each of these bounds is tight: it cannot be improved upon.
- This profile of preference lists may be computed efficiently.
- Generally, many such profiles of preference lists exist.

A far more “inconspicuous” manipulation.
Summary of Main Result (Weak Version)

- The women may force any M-rational perfect matching as the unique stable matching, using a profile of preference lists in which at most half of the women have blacklists, and in which the average blacklist size is less than 1. (Compare to each woman having a blacklist size of $|M|-1$.)
- Each of these bounds is tight: it cannot be improved upon.
- This profile of preference lists may be computed efficiently.
- Generally, many such profiles of preference lists exist.

A far more “inconspicuous” manipulation, esp. if preference-list lengths are bounded (e.g. New York High School Match).
Answering Gusfield and Irving’s Open Question

Summary of Main Result (Weak Version)

- The women may force any M-rational perfect matching as the unique stable matching, using a profile of preference lists in which at most half of the women have blacklists, and in which the average blacklist size is less than 1. (Compare to each woman having a blacklist size of $|M|-1$.)
- Each of these bounds is tight: it cannot be improved upon.
- This profile of preference lists may be computed efficiently.
- Generally, many such profiles of preference lists exist.

A far more “inconspicuous” manipulation, esp. if preference-list lengths are bounded (e.g. New York High School Match).

If women pay a price for every man they blacklist, then order-of-magnitude improvement.
Unbalanced Markets and Partial Matchings

• When there are less women than men (and all women are to be matched), no blacklists are required whatsoever.

• When there are more women than men (or if not all women are to be matched), each to-be-unmatched woman may have to blacklist as many as all men.

• Ashlagi et al. (2013) show a similar phase change w.r.t. the expected ranking of the stable partners of each participant on this participant's preference list in a random market. ($\log n$ vs. $n / \log n$)

• (cf. the shoe market.)

• Completely different proofs.
Unbalanced Markets and Partial Matchings

A Phase Change

• When there are less women than men (and all women are to be matched), no blacklists are required whatsoever.

• When there are more women than men (or if not all women are to be matched), each to-be-unmatched woman may have to blacklist as many as all men.

Ashlagi et al. (2013) show a similar phase change w.r.t. the expected ranking of the stable partners of each participant on this participant's preference list in a random market. \(\log n \) vs. \(n / \log n \) (cf. the shoe market.)

Completely different proofs.
A Phase Change

- When there are less women than men (and all women are to be matched), no blacklists are required whatsoever.
Unbalanced Markets and Partial Matchings

A Phase Change

- When there are less women than men (and all women are to be matched), no blacklists are required whatsoever.
- When there are more women than men (or if not all women are to be matched), each to-be-unmatched woman may have to blacklist as many as all men.
Unbalanced Markets and Partial Matchings

A Phase Change

- When there are less women than men (and all women are to be matched), no blacklists are required whatsoever.
- When there are more women than men (or if not all women are to be matched), each to-be-unmatched woman may have to blacklist as many as all men.

- Ashlagi et al. (2013) show a similar phase change w.r.t. the expected ranking of the stable partners of each participant on this participant’s preference list in a random market. ($\log n$ vs. $n/\log n$)
A Phase Change

- When there are less women than men (and all women are to be matched), no blacklists are required whatsoever.
- When there are more women than men (or if not all women are to be matched), each to-be-unmatched woman may have to blacklist as many as all men.

- Ashlagi et al. (2013) show a similar phase change w.r.t. the expected ranking of the stable partners of each participant on this participant’s preference list in a random market. ($\log n$ vs. $n/\log n$)
- (cf. the shoe market.)
Unbalanced Markets and Partial Matchings

A Phase Change

- When there are less women than men (and all women are to be matched), no blacklists are required whatsoever.
- When there are more women than men (or if not all women are to be matched), each to-be-unmatched woman may have to blacklist as many as all men.

- Ashlagi et al. (2013) show a similar phase change w.r.t. the expected ranking of the stable partners of each participant on this participant’s preference list in a random market. $(\log n \text{ vs. } \frac{n}{\log n})$
 - (cf. the shoe market.)
- Completely different proofs.
Improved Insight into Matching Markets

Both phase-change results lead to a similar conclusion in different senses:

The preferences of the smaller side of the market (even if only slightly smaller) play a far more significant role than may be expected in determining the stable matchings, and those of the larger side — a considerably insignificant one.
Improved Insight into Matching Markets

Both phase-change results lead to a similar conclusion in different senses:

The preferences of the smaller side of the market (even if only slightly smaller) play a far more significant role than may be expected in determining the stable matchings, and those of the larger side — a considerably insignificant one.

In a sense, our results extend this qualitative statement from a random matching market to any matching market.
Both phase-change results lead to a similar conclusion in different senses:

The preferences of the smaller side of the market (even if only slightly smaller) play a far more significant role than may be expected in determining the stable matchings, and those of the larger side — a considerably insignificant one.

In a sense, our results extend this qualitative statement from a random matching market to any matching market.

More generally: our results shed light on the question of how much, if at all, do given preferences for one side \textit{a priori} impose limitations on the set of stable matchings under various conditions.
“Example Insight”: Goods Allocation Problems

In goods allocation problems, only one of the sides (the *buyers*) has preferences.
“Example Insight”: Goods Allocation Problems

In goods allocation problems, only one of the sides (the *buyers*) has preferences.

- AS03 and A+09 consider using a version of the (student-optimal) Gale-Shapley algorithm for assigning school seats to children.
“Example Insight”: Goods Allocation Problems

In goods allocation problems, only one of the sides (the buyers) has preferences.

- AS03 and A+09 consider using a version of the (student-optimal) Gale-Shapley algorithm for assigning school seats to children.
- School priorities are very coarse (and sometimes nonexistent, e.g. NYC High School Match), so a tie-breaking rule is required.
“Example Insight”: Goods Allocation Problems

In goods allocation problems, only one of the sides (the buyers) has preferences.

- AS03 and A+09 consider using a version of the (student-optimal) Gale-Shapley algorithm for assigning school seats to children.
- School priorities are very coarse (and sometimes nonexistent, e.g. NYC High School Match), so a tie-breaking rule is required.
- Both papers: a single lottery for all schools (intuitively less “fair”) results in higher social welfare than a different lottery for each school.
“Example Insight”: Goods Allocation Problems

In goods allocation problems, only one of the sides (the buyers) has preferences.

- AS03 and A+09 consider using a version of the (student-optimal) Gale-Shapley algorithm for assigning school seats to children.
- School priorities are very coarse (and sometimes nonexistent, e.g. NYC High School Match), so a tie-breaking rule is required.
- Both papers: a single lottery for all schools (intuitively less “fair”) results in higher social welfare than a different lottery for each school.
- A concrete supporting argument from our result: if goods have no preferences, then
“Example Insight”: Goods Allocation Problems

In goods allocation problems, only one of the sides (the *buyers*) has preferences.

- AS03 and A+09 consider using a version of the (student-optimal) Gale-Shapley algorithm for assigning school seats to children.

- School priorities are very coarse (and sometimes nonexistent, e.g. NYC High School Match), so a tie-breaking rule is required.

- Both papers: a single lottery for all schools (intuitively less “fair”) results in higher social welfare than a different lottery for each school.

- A concrete supporting argument from our result: if goods have no preferences, then many lotteries = all *buyer-rational* matchings are possible*;
“Example Insight”: Goods Allocation Problems

In goods allocation problems, only one of the sides (the *buyers*) has preferences.

- AS03 and A+09 consider using a version of the (student-optimal) Gale-Shapley algorithm for assigning school seats to children.
- School priorities are very coarse (and sometimes nonexistent, e.g. NYC High School Match), so a tie-breaking rule is required.
- Both papers: a single lottery for all schools (intuitively less “fair”) results in higher social welfare than a different lottery for each school.
- A concrete supporting argument from our result: if goods have no preferences, then many lotteries = all *buyer-rational* matchings are possible*; single lottery = random serial (buyer) dictatorship \Rightarrow Pareto-efficient outcome.
Theorem (Manipulation with Minimal Blacklists)

Define \(n \equiv |W| = |M| \). Let \(P_M \) be a profile of preference lists. For every \(M \)-rational perfect matching \(\mu \), there exists a profile \(P_W \) of preference lists for \(W \), s.t. all the following hold.

1. The unique stable matching, given \(P_W \) and \(P_M \), is \(\mu \).
2. The blacklists in \(P_W \) are pairwise disjoint, i.e. no man appears in more than one blacklist.
3. \(n_b \), the number of women who have nonempty blacklists in \(P_W \), is at most \(n \).
4. The combined size of all blacklists in \(P_W \) is at most \(n - n_b \), i.e. at most the number of women who have empty blacklists.

Furthermore, \(P_W \) can be computed in worst-case \(O(n^3) \) time, best-case \(O(n^2) \) time and average-case (assuming \(\mu \) is uniformly distributed given \(P_M \)) \(O(n^2 \log n) \) time.
Theorem (Manipulation with Minimal Blacklists)

Define \(n \triangleq |W| = |M| \). Let \(\mathcal{P}_M \) be a profile of preference lists for \(M \). For every \(M \)-rational perfect matching \(\mu \), there exists a profile \(\mathcal{P}_W \) of preference lists for \(W \), s.t. all the following hold.

1. The unique stable matching, given \(\mathcal{P}_W \) and \(\mathcal{P}_M \), is \(\mu \).
2. The blacklists in \(\mathcal{P}_W \) are pairwise disjoint, i.e. no man appears in more than one blacklist.
3. \(n_b \), the number of women who have nonempty blacklists in \(\mathcal{P}_W \), is at most \(\frac{n}{2} \).
4. The combined size of all blacklists in \(\mathcal{P}_W \) is at most \(n - n_b \), i.e. at most the number of women who have empty blacklists.
Full Result for Balanced Markets

Theorem (Manipulation with Minimal Blacklists)

Define $n \triangleq |W| = |M|$. Let \mathcal{P}_M be a profile of preference lists for M. For every M-rational perfect matching μ, there exists a profile \mathcal{P}_W of preference lists for W, s.t. all the following hold.

1. The unique stable matching, given \mathcal{P}_W and \mathcal{P}_M, is μ.
2. The blacklists in \mathcal{P}_W are pairwise disjoint, i.e. no man appears in more than one blacklist.
3. n_b, the number of women who have nonempty blacklists in \mathcal{P}_W, is at most $\frac{n}{2}$.
4. The combined size of all blacklists in \mathcal{P}_W is at most $n - n_b$, i.e. at most the number of women who have empty blacklists.

Furthermore, \mathcal{P}_W can be computed in worst-case $O(n^3)$ time, best-case $O(n^2)$ time and average-case (assuming μ is uniformly distributed given \mathcal{P}_M) $O(n^2 \log n)$ time.
Theorem (Manipulation with Minimal Blacklists)

Define $n \triangleq |W| = |M|$. Let \mathcal{P}_M be a profile of preference lists for M. For every M-rational perfect matching μ, there exists a profile \mathcal{P}_W of preference lists for W, s.t. all the following hold.

1. The unique stable matching, given \mathcal{P}_W and \mathcal{P}_M, is μ.
2. The blacklists in \mathcal{P}_W are pairwise disjoint, i.e. no man appears in more than one blacklist.
3. n_b, the number of women who have nonempty blacklists in \mathcal{P}_W, is at most $\frac{n}{2}$.
4. The combined size of all blacklists in \mathcal{P}_W is at most $n - n_b$, i.e. at most the number of women who have empty blacklists.

Furthermore, \mathcal{P}_W can be computed in worst-case $O(n^3)$ time, best-case $O(n^2)$ time and average-case (assuming μ is uniformly distributed given \mathcal{P}_M) $O(n^2 \log n)$ time.
Theorem (Manipulation with Minimal Blacklists)

Define \(n \triangleq |W| = |M| \). Let \(\mathcal{P}_M \) be a profile of preference lists for \(M \). For every \(M \)-rational perfect matching \(\mu \), there exists a profile \(\mathcal{P}_W \) of preference lists for \(W \), s.t. all the following hold.

1. The unique stable matching, given \(\mathcal{P}_W \) and \(\mathcal{P}_M \), is \(\mu \).
2. The blacklists in \(\mathcal{P}_W \) are pairwise disjoint, i.e. no man appears in more than one blacklist.
3. \(n_b \), the number of women who have nonempty blacklists in \(\mathcal{P}_W \), is at most \(\frac{n}{2} \).
4. The combined size of all blacklists in \(\mathcal{P}_W \) is at most \(n - n_b \), i.e. at most the number of women who have empty blacklists.

Furthermore, \(\mathcal{P}_W \) can be computed in worst-case \(O(n^3) \) time, best-case \(O(n^2) \) time and average-case (assuming \(\mu \) is uniformly distributed given \(\mathcal{P}_M \)) \(O(n^2 \log n) \) time.
Full Result for Balanced Markets

Theorem (Manipulation with Minimal Blacklists)

Define $n \triangleq |W| = |M|$. Let \mathcal{P}_M be a profile of preference lists for M. For every M-rational perfect matching μ, there exists a profile \mathcal{P}_W of preference lists for W, s.t. all the following hold.

1. The unique stable matching, given \mathcal{P}_W and \mathcal{P}_M, is μ.
2. The blacklists in \mathcal{P}_W are pairwise disjoint, i.e. no man appears in more than one blacklist.
3. n_b, the number of women who have nonempty blacklists in \mathcal{P}_W, is at most $\frac{n}{2}$.
4. The combined size of all blacklists in \mathcal{P}_W is at most $n-n_b$, i.e. at most the number of women who have empty blacklists.

Furthermore, \mathcal{P}_W can be computed in worst-case $O(n^3)$ time, best-case $O(n^2)$ time and average-case (assuming μ is uniformly distributed given \mathcal{P}_M) $O(n^2 \log n)$ time.
Theorem (Manipulation with Minimal Blacklists)

Define $n \triangleq |W| = |M|$. Let \mathcal{P}_M be a profile of preference lists for M. For every M-rational perfect matching μ, there exists a profile \mathcal{P}_W of preference lists for W, s.t. all the following hold.

1. The unique stable matching, given \mathcal{P}_W and \mathcal{P}_M, is μ.

2. The blacklists in \mathcal{P}_W are pairwise disjoint, i.e. no man appears in more than one blacklist.

3. n_b, the number of women who have nonempty blacklists in \mathcal{P}_W, is at most $\frac{n}{2}$.

4. The combined size of all blacklists in \mathcal{P}_W is at most $n - n_b$, i.e. at most the number of women who have empty blacklists.

Furthermore, \mathcal{P}_W can be computed in worst-case $O(n^3)$ time, best-case $O(n^2)$ time and average-case (assuming μ is uniformly distributed given \mathcal{P}_M) $O(n^2 \log n)$ time.
Tradeoff: #Blacklists vs. Combined Blacklist Size

3. \(n_b \), the number of women who have nonempty blacklists in \(\mathcal{P}_W \), is at most \(\frac{n}{2} \).

4. The combined size of all blacklists in \(\mathcal{P}_W \) is at most \(n - n_b \).
Tradeoff: #Blacklists vs. Combined Blacklist Size

3. n_b, the number of women who have nonempty blacklists in \mathcal{P}_W, is at most $\frac{n}{2}$.

4. The combined size of all blacklists in \mathcal{P}_W is at most $n - n_b$.

Examples of blacklist sizes for $n = 8$:

7 0 0 0 0 0 0 0 ($n_b = 1$)
Tradeoff: #Blacklists vs. Combined Blacklist Size

3. \(n_b \), the number of women who have nonempty blacklists in \(\mathcal{P}_W \), is at most \(\frac{n}{2} \).

4. The combined size of all blacklists in \(\mathcal{P}_W \) is at most \(n - n_b \).

Examples of blacklist sizes for \(n = 8 \):

\[
\begin{align*}
7 & 0 0 0 0 0 0 0 \quad (n_b = 1) \\
1 & 1 1 1 0 0 0 0 \quad (n_b = 4)
\end{align*}
\]
Tradeoff: #Blacklists vs. Combined Blacklist Size

3. n_b, the number of women who have nonempty blacklists in \mathcal{P}_W, is at most $\frac{n}{2}$.

4. The combined size of all blacklists in \mathcal{P}_W is at most $n - n_b$.

Examples of blacklist sizes for $n = 8$:

- $7\ 0\ 0\ 0\ 0\ 0\ 0\ 0$ ($n_b = 1$)
- $1\ 1\ 1\ 1\ 0\ 0\ 0\ 0$ ($n_b = 4$)
- $4\ 2\ 0\ 0\ 0\ 0\ 0\ 0$ ($n_b = 2$)
Tradeoff: \#Blacklists vs. Combined Blacklist Size

3. \(n_b \), the number of women who have nonempty blacklists in \(\mathcal{P}_W \), is at most \(\frac{n}{2} \).

4. The combined size of all blacklists in \(\mathcal{P}_W \) is at most \(n - n_b \).

Examples of blacklist sizes for \(n = 8 \):

- 7 0 0 0 0 0 0 0 \((n_b = 1) \)
- 1 1 1 1 0 0 0 0 \((n_b = 4) \)
- 4 2 0 0 0 0 0 0 \((n_b = 2) \)
- 4 1 0 0 0 0 0 0 \((n_b = 2) \)
3. n_b, the number of women who have nonempty blacklists in P_W, is at most $\frac{n}{2}$.

4. The combined size of all blacklists in P_W is at most $n - n_b$.

Examples of blacklist sizes for $n = 8$:

7 0 0 0 0 0 0 0 \quad (n_b = 1)
1 1 1 1 0 0 0 0 \quad (n_b = 4)
4 2 0 0 0 0 0 0 \quad (n_b = 2)
4 1 0 0 0 0 0 0 \quad (n_b = 2)
3 1 1 0 0 0 0 0 \quad (n_b = 3)
\vdots
Tradeoff: #Blacklists vs. Combined Blacklist Size

3. \(n_b \), the number of women who have nonempty blacklists in \(\mathcal{P}_W \), is at most \(\frac{n}{2} \).

4. The combined size of all blacklists in \(\mathcal{P}_W \) is at most \(n - n_b \).

Examples of blacklist sizes for \(n = 8 \):

- 7 0 0 0 0 0 0 0 \((n_b = 1) \)
- 1 1 1 1 0 0 0 0 \((n_b = 4) \)
- 4 2 0 0 0 0 0 0 \((n_b = 2) \)
- 4 1 0 0 0 0 0 0 \((n_b = 2) \)
- 3 1 1 0 0 0 0 0 \((n_b = 3) \)
- ...

Tightness

Each of these is the optimal solution for some \(\mathcal{P}_M \) and \(\mu \).
Tradeoff: \#Blacklists vs. Combined Blacklist Size

\begin{enumerate}
\item n_b, the number of women who have nonempty blacklists in \mathcal{P}_W, is at most $\frac{n}{2}$.
\item The combined size of all blacklists in \mathcal{P}_W is at most $n - n_b$.
\end{enumerate}

Examples of blacklist sizes for $n = 8$:

- $7 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$ ($n_b = 1$)
- $1 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0$ ($n_b = 4$)
- $4 \ 2 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$ ($n_b = 2$)
- $4 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$ ($n_b = 2$)
- $3 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0$ ($n_b = 3$)
- ...

Tightness

Each of these is the optimal solution for some \mathcal{P}_M and μ.
The Gale-Shapley Deferred-Acceptance Algorithm

A version modelled after Dubins and Freedman’s (1981)

The following algorithm yields the M-optimal stable matching.
The Gale-Shapley Deferred-Acceptance Algorithm

A version modelled after Dubins and Freedman’s (1981)

The following algorithm yields the M-optimal stable matching.

1. **Setup**: Every man serenades under the window of the woman he prefers most.
The Gale-Shapley Deferred-Acceptance Algorithm

A version modelled after Dubins and Freedman’s (1981)

The following algorithm yields the M-optimal stable matching.

1. Setup: Every man serenades under the window of the woman he prefers most.

2. A man is *scheduled for rejection* if he is blacklisted by the woman to whom he serenades, or if she prefers another man currently serenading under her window.
The Gale-Shapley Deferred-Acceptance Algorithm

A version modelled after Dubins and Freedman’s (1981)

The following algorithm yields the M-optimal stable matching.

1. Setup: Every man serenades under the window of the woman he prefers most.

2. A man is *scheduled for rejection* if he is blacklisted by the woman to whom he serenades, or if she prefers another man currently serenading under her window.

3. On each *night*, choose an arbitrary man scheduled for rejection. He moves to serenade under the window of the woman next on his preference list, if such woman exists.

The (unique) M-optimal matching is always reached, regardless of the arbitrary choices made during the run.
The Gale-Shapley Deferred-Acceptance Algorithm

A version modelled after Dubins and Freedman’s (1981)

The following algorithm yields the M-optimal stable matching.

1. **Setup:** Every man serenades under the window of the woman he prefers most.

2. A man is *scheduled for rejection* if he is blacklisted by the woman to whom he serenades, or if she prefers another man currently serenading under her window.

3. On each *night*, choose an arbitrary man scheduled for rejection. He moves to serenade under the window of the woman next on his preference list, if such woman exists.

4. When no men are scheduled for rejection, the algorithm terminates. Each woman is matched with the man serenading under her window; everyone else is unmatched.

The (unique) M-optimal matching is always reached, regardless of the arbitrary choices made during the run.
Tightness Overview

<table>
<thead>
<tr>
<th>m_1</th>
<th>$w_2 > w_3 > w_4 > w_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_2</td>
<td>$w_3 > w_4 > w_1 > w_2$</td>
</tr>
<tr>
<td>m_3</td>
<td>$w_4 > w_1 > w_2 > w_3$</td>
</tr>
<tr>
<td>m_4</td>
<td>$w_1 > w_2 > w_3 > w_4$</td>
</tr>
</tbody>
</table>
Tightness Overview

<table>
<thead>
<tr>
<th>m_1</th>
<th>$w_2 > w_3 > w_4 > w_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_2</td>
<td>$w_3 > w_4 > w_1 > w_2$</td>
</tr>
<tr>
<td>m_3</td>
<td>$w_4 > w_1 > w_2 > w_3$</td>
</tr>
<tr>
<td>m_4</td>
<td>$w_1 > w_2 > w_3 > w_4$</td>
</tr>
</tbody>
</table>
Tightness Overview

<table>
<thead>
<tr>
<th>m_1</th>
<th>$w_2 > w_3 > w_4 > w_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_2</td>
<td>$w_3 > w_4 > w_1 > w_2$</td>
</tr>
<tr>
<td>m_3</td>
<td>$w_4 > w_1 > w_2 > w_3$</td>
</tr>
<tr>
<td>m_4</td>
<td>$w_1 > w_2 > w_3 > w_4$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>w_1</th>
<th>m_1 (Blacklist: m_4, m_3, m_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_2</td>
<td>$m_2 > m_1 > m_4 > m_3$</td>
</tr>
<tr>
<td>w_3</td>
<td>$m_3 > m_2 > m_1 > m_4$</td>
</tr>
<tr>
<td>w_4</td>
<td>$m_4 > m_3 > m_2 > m_1$</td>
</tr>
</tbody>
</table>
Tightness Overview

<table>
<thead>
<tr>
<th>m_1</th>
<th>$w_2 > w_3 > w_4 > w_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_2</td>
<td>$w_3 > w_4 > w_1 > w_2$</td>
</tr>
<tr>
<td>m_3</td>
<td>$w_4 > w_1 > w_2 > w_3$</td>
</tr>
<tr>
<td>m_4</td>
<td>$w_1 > w_2 > w_3 > w_4$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>w_1</th>
<th>m_1 (Blacklist: m_4, m_3, m_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_2</td>
<td>$m_2 > m_1 > m_4 > m_3$</td>
</tr>
<tr>
<td>w_3</td>
<td>$m_3 > m_2 > m_1 > m_4$</td>
</tr>
<tr>
<td>w_4</td>
<td>$m_4 > m_3 > m_2 > m_1$</td>
</tr>
</tbody>
</table>

1. m_4
2. m_1
3. m_2
4. m_3
Tightness Overview

<table>
<thead>
<tr>
<th>m_1</th>
<th>$w_2 > w_3 > w_4 > w_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_2</td>
<td>$w_3 > w_4 > w_1 > w_2$</td>
</tr>
<tr>
<td>m_3</td>
<td>$w_4 > w_1 > w_2 > w_3$</td>
</tr>
<tr>
<td>m_4</td>
<td>$w_1 > w_2 > w_3 > w_4$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>w_1</th>
<th>m_1 (Blacklist: m_4, m_3, m_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_2</td>
<td>$m_2 > m_1 > m_4 > m_3$</td>
</tr>
<tr>
<td>w_3</td>
<td>$m_3 > m_2 > m_1 > m_4$</td>
</tr>
<tr>
<td>w_4</td>
<td>$m_4 > m_3 > m_2 > m_1$</td>
</tr>
</tbody>
</table>

Yannai A. Gonczarowski (HUJI&MSR) Manipulation of Stable Matchings using Minimal Blacklists July 29, 2014
Tightness Overview

\[
\begin{array}{l|llll}
& w_2 & w_3 & w_4 & w_1 \\
\hline
m_1 & > & > & > & \\
m_2 & w_3 & w_4 & w_1 & w_2 \\
m_3 & w_4 & w_1 & w_2 & w_3 \\
m_4 & w_1 & w_2 & w_3 & > \\
\end{array}
\]

\[
\begin{array}{l|llll}
& m_1 & > & > & > \\
\hline
w_1 & m_1 & > & > & > \\
w_2 & m_2 & m_1 & m_4 & m_3 \\
w_3 & m_3 & m_2 & m_1 & m_4 \\
w_4 & m_4 & m_3 & m_2 & m_1 \\
\end{array}
\]

(Blacklist: \(m_4, m_3, m_2 \))
Tightness Overview

<table>
<thead>
<tr>
<th>m_1</th>
<th>$w_2 > w_3 > w_4 > w_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_2</td>
<td>$w_3 > w_4 > w_1 > w_2$</td>
</tr>
<tr>
<td>m_3</td>
<td>$w_4 > w_1 > w_2 > w_3$</td>
</tr>
<tr>
<td>m_4</td>
<td>$w_1 > w_2 > w_3 > w_4$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>w_1</th>
<th>m_1 (Blacklist: m_4, m_3, m_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_2</td>
<td>$m_2 > m_1 > m_4 > m_3$</td>
</tr>
<tr>
<td>w_3</td>
<td>$m_3 > m_2 > m_1 > m_4$</td>
</tr>
<tr>
<td>w_4</td>
<td>$m_4 > m_3 > m_2 > m_1$</td>
</tr>
</tbody>
</table>

![Diagram with nodes and weights]
Tightness Overview

<table>
<thead>
<tr>
<th>m_1</th>
<th>$w_2 > w_3 > w_4 > w_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_2</td>
<td>$w_3 > w_4 > w_1 > w_2$</td>
</tr>
<tr>
<td>m_3</td>
<td>$w_4 > w_1 > w_2 > w_3$</td>
</tr>
<tr>
<td>m_4</td>
<td>$w_1 > w_2 > w_3 > w_4$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>w_1</th>
<th>m_1 (Blacklist: m_4, m_3, m_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_2</td>
<td>$m_2 > m_1 > m_4 > m_3$</td>
</tr>
<tr>
<td>w_3</td>
<td>$m_3 > m_2 > m_1 > m_4$</td>
</tr>
<tr>
<td>w_4</td>
<td>$m_4 > m_3 > m_2 > m_1$</td>
</tr>
</tbody>
</table>

![Diagram](image-url)
Tightness Overview

<table>
<thead>
<tr>
<th>m_1</th>
<th>$w_2 > w_3 > w_4 > w_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_2</td>
<td>$w_3 > w_4 > w_1 > w_2$</td>
</tr>
<tr>
<td>m_3</td>
<td>$w_4 > w_1 > w_2 > w_3$</td>
</tr>
<tr>
<td>m_4</td>
<td>$w_1 > w_2 > w_3 > w_4$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>w_1</th>
<th>m_1 (Blacklist: m_4, m_3, m_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_2</td>
<td>$m_2 > m_1 > m_4 > m_3$</td>
</tr>
<tr>
<td>w_3</td>
<td>$m_3 > m_2 > m_1 > m_4$</td>
</tr>
<tr>
<td>w_4</td>
<td>$m_4 > m_3 > m_2 > m_1$</td>
</tr>
</tbody>
</table>

Diagram:

1. w_1
2. m_4
3. w_2
4. $m_1\, m_4$
5. m_1
6. w_3
7. $m_2\, m_4$
8. m_1
9. w_4
10. m_2
11. $m_3\, m_4$
12. m_3
Tightness Overview

<table>
<thead>
<tr>
<th>m_1</th>
<th>$w_2 > w_3 > w_4 > w_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_2</td>
<td>$w_3 > w_4 > w_1 > w_2$</td>
</tr>
<tr>
<td>m_3</td>
<td>$w_4 > w_1 > w_2 > w_3$</td>
</tr>
<tr>
<td>m_4</td>
<td>$w_1 > w_2 > w_3 > w_4$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>w_1</th>
<th>m_1 (Blacklist: m_4, m_3, m_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_2</td>
<td>$m_2 > m_1 > m_4 > m_3$</td>
</tr>
<tr>
<td>w_3</td>
<td>$m_3 > m_2 > m_1 > m_4$</td>
</tr>
<tr>
<td>w_4</td>
<td>$m_4 > m_3 > m_2 > m_1$</td>
</tr>
</tbody>
</table>

Yannai A. Gonczarowski (HUJI&MSR) Manipulation of Stable Matchings using Minimal Blacklists July 29, 2014 13 / 18
Tightness Overview

<table>
<thead>
<tr>
<th></th>
<th>m₁</th>
<th>w₂ > w₃ > w₄ > w₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>m₂</td>
<td>w₃ > w₄ > w₁ > w₂</td>
<td></td>
</tr>
<tr>
<td>m₃</td>
<td>w₄ > w₁ > w₂ > w₃</td>
<td></td>
</tr>
<tr>
<td>m₄</td>
<td>w₁ > w₂ > w₃ > w₄</td>
<td></td>
</tr>
</tbody>
</table>

- **w₁**: m₁ (Blacklist: m₄, m₃, m₂)
- **w₂**: m₂ > m₁ > m₄ > m₃
- **w₃**: m₃ > m₂ > m₁ > m₄
- **w₄**: m₄ > m₃ > m₂ > m₁
Tightness Overview

<table>
<thead>
<tr>
<th>m1</th>
<th>w2 > w3 > w4 > w1</th>
</tr>
</thead>
<tbody>
<tr>
<td>m2</td>
<td>w3 > w4 > w1 > w2</td>
</tr>
<tr>
<td>m3</td>
<td>w4 > w1 > w2 > w3</td>
</tr>
<tr>
<td>m4</td>
<td>w1 > w2 > w3 > w4</td>
</tr>
</tbody>
</table>

w1 | m1 (Blacklist: m4, m3, m2) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>w2</td>
<td>m2 > m1 > m4 > m3</td>
</tr>
<tr>
<td>w3</td>
<td>m3 > m2 > m1 > m4</td>
</tr>
<tr>
<td>w4</td>
<td>m4 > m3 > m2 > m1</td>
</tr>
</tbody>
</table>

1 m4
2 m1, m4
3 m1
4 m1
5 m3
6 m1, m3
7 m1
8 m1
Tightness Overview

<table>
<thead>
<tr>
<th>m_1</th>
<th>$w_2 > w_3 > w_4 > w_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_2</td>
<td>$w_3 > w_4 > w_1 > w_2$</td>
</tr>
<tr>
<td>m_3</td>
<td>$w_4 > w_1 > w_2 > w_3$</td>
</tr>
<tr>
<td>m_4</td>
<td>$w_1 > w_2 > w_3 > w_4$</td>
</tr>
</tbody>
</table>

w_1, m_1 (Blacklist: m_4, m_3, m_2)

$w_2, m_2 > m_1 > m_4 > m_3$

$w_3, m_3 > m_2 > m_1 > m_4$

$w_4, m_4 > m_3 > m_2 > m_1$
Tightness Overview

<table>
<thead>
<tr>
<th>m_1</th>
<th>$w_2 > w_3 > w_4 > w_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_2</td>
<td>$w_3 > w_4 > w_1 > w_2$</td>
</tr>
<tr>
<td>m_3</td>
<td>$w_4 > w_1 > w_2 > w_3$</td>
</tr>
<tr>
<td>m_4</td>
<td>$w_1 > w_2 > w_3 > w_4$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>w_1</th>
<th>m_1 (Blacklist: m_4, m_3, m_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_2</td>
<td>$m_2 > m_1 > m_4 > m_3$</td>
</tr>
<tr>
<td>w_3</td>
<td>$m_3 > m_2 > m_1 > m_4$</td>
</tr>
<tr>
<td>w_4</td>
<td>$m_4 > m_3 > m_2 > m_1$</td>
</tr>
</tbody>
</table>
Tightness Overview

<table>
<thead>
<tr>
<th>m_1</th>
<th>w_2 > w_3 > w_4 > w_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_2</td>
<td>w_3 > w_4 > w_1 > w_2</td>
</tr>
<tr>
<td>m_3</td>
<td>w_4 > w_1 > w_2 > w_3</td>
</tr>
<tr>
<td>m_4</td>
<td>w_1 > w_2 > w_3 > w_4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>w_1</th>
<th>m_1</th>
<th>(Blacklist: m_4, m_3, m_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_2</td>
<td>m_2</td>
<td>m_1 > m_4 > m_3</td>
</tr>
<tr>
<td>w_3</td>
<td>m_3</td>
<td>m_2 > m_1 > m_4</td>
</tr>
<tr>
<td>w_4</td>
<td>m_4</td>
<td>m_3 > m_2 > m_1</td>
</tr>
</tbody>
</table>

1. m_4
2. m_1, m_4
3. m_1
4. m_1
5. m_3
6. m_1, m_3
7. m_1
8. m_1
9. m_2
10. m_1, m_2

11. m_2, m_4
12. m_2
13. m_3, m_4
14. m_3
15. m_4
16. m_4
17. m_3
18. m_4
19. m_4
20. m_2
Tightness Overview

<table>
<thead>
<tr>
<th>m_1</th>
<th>$w_2 > w_3 > w_4 > w_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_2</td>
<td>$w_3 > w_4 > w_1 > w_2$</td>
</tr>
<tr>
<td>m_3</td>
<td>$w_4 > w_1 > w_2 > w_3$</td>
</tr>
<tr>
<td>m_4</td>
<td>$w_1 > w_2 > w_3 > w_4$</td>
</tr>
</tbody>
</table>

w_1 (Blacklist: m_4, m_3, m_2)

w_2 $m_2 > m_1 > m_4 > m_3$

w_3 $m_3 > m_2 > m_1 > m_4$

w_4 $m_4 > m_3 > m_2 > m_1$
Tightness Overview

<table>
<thead>
<tr>
<th>m_1</th>
<th>$w_2 > w_3 > w_4 > w_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_2</td>
<td>$w_3 > w_4 > w_1 > w_2$</td>
</tr>
<tr>
<td>m_3</td>
<td>$w_4 > w_1 > w_2 > w_3$</td>
</tr>
<tr>
<td>m_4</td>
<td>$w_1 > w_2 > w_3 > w_4$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>w_1</th>
<th>m_1 (Blacklist: m_4, m_3, m_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_2</td>
<td>$m_2 > m_1 > m_4 > m_3$</td>
</tr>
<tr>
<td>w_3</td>
<td>$m_3 > m_2 > m_1 > m_4$</td>
</tr>
<tr>
<td>w_4</td>
<td>$m_4 > m_3 > m_2 > m_1$</td>
</tr>
</tbody>
</table>

Yannai A. Gonczarowski (HUJI&MSR) Manipulation of Stable Matchings using Minimal Blacklists July 29, 2014 13 / 18
Tightness Overview

<table>
<thead>
<tr>
<th>m_1</th>
<th>$w_2 > w_3 > w_4 > w_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_2</td>
<td>$w_3 > w_4 > w_1 > w_2$</td>
</tr>
<tr>
<td>m_3</td>
<td>$w_4 > w_1 > w_2 > w_3$</td>
</tr>
<tr>
<td>m_4</td>
<td>$w_1 > w_2 > w_3 > w_4$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>w_1</th>
<th>m_1 (Blacklist: m_4, m_3, m_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_2</td>
<td>$m_2 > m_1 > m_4 > m_3$</td>
</tr>
<tr>
<td>w_3</td>
<td>$m_3 > m_2 > m_1 > m_4$</td>
</tr>
<tr>
<td>w_4</td>
<td>$m_4 > m_3 > m_2 > m_1$</td>
</tr>
</tbody>
</table>

![Diagram](attachment:image.png)
Tightness Overview

<table>
<thead>
<tr>
<th>m_1</th>
<th>$w_2 > w_3 > w_4 > w_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_2</td>
<td>$w_3 > w_4 > w_1 > w_2$</td>
</tr>
<tr>
<td>m_3</td>
<td>$w_4 > w_1 > w_2 > w_3$</td>
</tr>
<tr>
<td>m_4</td>
<td>$w_1 > w_2 > w_3 > w_4$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>w_1</th>
<th>m_1 (Blacklist: m_4, m_3, m_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_2</td>
<td>$m_2 > m_1 > m_4 > m_3$</td>
</tr>
<tr>
<td>w_3</td>
<td>$m_3 > m_2 > m_1 > m_4$</td>
</tr>
<tr>
<td>w_4</td>
<td>$m_4 > m_3 > m_2 > m_1$</td>
</tr>
</tbody>
</table>

Yannai A. Gonczarowski (HUJI&MSR) Manipulation of Stable Matchings using Minimal Blacklists July 29, 2014 13 / 18
Tightness Overview

<table>
<thead>
<tr>
<th>m_1</th>
<th>$w_2 > w_3 > w_4 > w_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_2</td>
<td>$w_3 > w_4 > w_1 > w_2$</td>
</tr>
<tr>
<td>m_3</td>
<td>$w_4 > w_1 > w_2 > w_3$</td>
</tr>
<tr>
<td>m_4</td>
<td>$w_1 > w_2 > w_3 > w_4$</td>
</tr>
</tbody>
</table>

- w_1: (Blacklist: m_4, m_3, m_2)
- w_2: $m_2 > m_1 > m_4 > m_3$
- w_3: $m_3 > m_2 > m_1 > m_4$
- w_4: $m_4 > m_3 > m_2 > m_1$
Tightness Overview

<table>
<thead>
<tr>
<th>m_1</th>
<th>$w_2 > w_3 > w_4 > w_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_2</td>
<td>$w_3 > w_4 > w_1 > w_2$</td>
</tr>
<tr>
<td>m_3</td>
<td>$w_4 > w_1 > w_2 > w_3$</td>
</tr>
<tr>
<td>m_4</td>
<td>$w_1 > w_2 > w_3 > w_4$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>w_1</th>
<th>m_1 (Blacklist: m_4, m_3, m_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_2</td>
<td>$m_2 > m_1 > m_4 > m_3$</td>
</tr>
<tr>
<td>w_3</td>
<td>$m_3 > m_2 > m_1 > m_4$</td>
</tr>
<tr>
<td>w_4</td>
<td>$m_4 > m_3 > m_2 > m_1$</td>
</tr>
</tbody>
</table>

Yannai A. Gonczarowski (HUJI&MSR) Manipulation of Stable Matchings using Minimal Blacklists July 29, 2014 13 / 18
Tightness Overview

<table>
<thead>
<tr>
<th></th>
<th>w_2 > w_3 > w_4 > w_1</th>
<th>w_1 > w_2 > w_3 > w_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_1</td>
<td>$w_2 > w_3 > w_4 > w_1$</td>
<td>$w_1 > w_2 > w_3 > w_4$</td>
</tr>
<tr>
<td>m_2</td>
<td>$w_3 > w_4 > w_1 > w_2$</td>
<td></td>
</tr>
<tr>
<td>m_3</td>
<td>$w_4 > w_1 > w_2 > w_3$</td>
<td></td>
</tr>
<tr>
<td>m_4</td>
<td>$w_1 > w_2 > w_3 > w_4$</td>
<td>w_1 (Blacklist: m_4, m_3, m_2)</td>
</tr>
</tbody>
</table>

1. m_4
2. m_*
3. m_*
4. m_*
5. m_*
6. m_*
7. m_*
8. m_*
9. m_*
10. m_*, m_2
11. m_2
12. m_2
13. m_1
Tightness Overview

<table>
<thead>
<tr>
<th>m_1</th>
<th>$w_2 > w_3 > w_4 > w_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_2</td>
<td>$w_3 > w_4 > w_1 > w_2$</td>
</tr>
<tr>
<td>m_3</td>
<td>$w_4 > w_1 > w_2 > w_3$</td>
</tr>
<tr>
<td>m_4</td>
<td>$w_1 > w_2 > w_3 > w_4$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>w_1</th>
<th>m_1 (Blacklist: m_4, m_3, m_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_2</td>
<td>$m_2 > m_1 > m_4 > m_3$</td>
</tr>
<tr>
<td>w_3</td>
<td>$m_3 > m_2 > m_1 > m_4$</td>
</tr>
<tr>
<td>w_4</td>
<td>$m_4 > m_3 > m_2 > m_1$</td>
</tr>
</tbody>
</table>

Yannai A. Gonczarowski (HUJI&MSR) Manipulation of Stable Matchings using Minimal Blacklists July 29, 2014 13 / 18
Tightness Overview

<table>
<thead>
<tr>
<th>m_1</th>
<th>$w_2 > w_3 > w_4 > w_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_2</td>
<td>$w_3 > w_4 > w_1 > w_2$</td>
</tr>
<tr>
<td>m_3</td>
<td>$w_4 > w_1 > w_2 > w_3$</td>
</tr>
<tr>
<td>m_4</td>
<td>$w_1 > w_2 > w_3 > w_4$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>w_1</th>
<th>m_1 (Blacklist: m_4, m_3, m_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_2</td>
<td>$m_2 > m_1 > m_4 > m_3$</td>
</tr>
<tr>
<td>w_3</td>
<td>$m_3 > m_2 > m_1 > m_4$</td>
</tr>
<tr>
<td>w_4</td>
<td>$m_4 > m_3 > m_2 > m_1$</td>
</tr>
</tbody>
</table>

Yannai A. Gonczarowski (HUJI&MSR)
Manipulation of Stable Matchings using Minimal Blacklists
July 29, 2014
13 / 18
Tightness Overview

<table>
<thead>
<tr>
<th>m_1</th>
<th>$w_2 > w_3 > w_4 > w_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_2</td>
<td>$w_3 > w_4 > w_1 > w_2$</td>
</tr>
<tr>
<td>m_3</td>
<td>$w_4 > w_1 > w_2 > w_3$</td>
</tr>
<tr>
<td>m_4</td>
<td>$w_1 > w_2 > w_3 > w_4$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>w_1</th>
<th>m_1 (Blacklist: m_4, m_3, m_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_2</td>
<td>$m_2 > m_1 > m_4 > m_3$</td>
</tr>
<tr>
<td>w_3</td>
<td>$m_3 > m_2 > m_1 > m_4$</td>
</tr>
<tr>
<td>w_4</td>
<td>$m_4 > m_3 > m_2 > m_1$</td>
</tr>
</tbody>
</table>
Tightness Overview

<table>
<thead>
<tr>
<th></th>
<th>$w_2 > w_3 > w_4 > w_1$</th>
<th></th>
<th>$w_1 > m_4 > w_3 > w_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_1</td>
<td>$w_2 > w_3 > w_4 > w_1$</td>
<td>m_1</td>
<td>$w_1 > m_4 > w_3 > w_1$</td>
</tr>
<tr>
<td>m_2</td>
<td>$w_3 > w_4 > w_1 > w_2$</td>
<td>$m_2 > m_1 > m_4 > m_3$</td>
<td></td>
</tr>
<tr>
<td>m_3</td>
<td>$w_4 > w_1 > w_2 > w_3$</td>
<td>$m_3 > m_2 > m_1 > m_4$</td>
<td></td>
</tr>
<tr>
<td>m_4</td>
<td>$w_1 > w_2 > w_3 > w_4$</td>
<td>$m_4 > m_3 > m_2 > m_1$</td>
<td></td>
</tr>
</tbody>
</table>

A Poll

Results

Overview

A Peek Into the Depths

Summary

Yannai A. Gonczarowski (HUJI&MSR) Manipulation of Stable Matchings using Minimal Blacklists July 29, 2014 13 / 18
Tightness Overview

<table>
<thead>
<tr>
<th>m_1</th>
<th>$w_2 > w_3 > w_4 > w_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_2</td>
<td>$w_3 > w_4 > w_1 > w_2$</td>
</tr>
<tr>
<td>m_3</td>
<td>$w_4 > w_1 > w_2 > w_3$</td>
</tr>
<tr>
<td>m_4</td>
<td>$w_1 > w_2 > w_3 > w_4$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>w_1</th>
<th>m_1 (Blacklist: m_4, m_3, m_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_2</td>
<td>$m_2 > m_1 > m_4 > m_3$</td>
</tr>
<tr>
<td>w_3</td>
<td>$m_3 > m_2 > m_1 > m_4$</td>
</tr>
<tr>
<td>w_4</td>
<td>$m_4 > m_3 > m_2 > m_1$</td>
</tr>
</tbody>
</table>

\[w_1 > m_4 > m_3 > m_2 > m_1 > m_2 > m_3 > m_4 > m_1 \]

\[w_2 > m_1 > m_4 > m_3 > m_2 > m_3 > m_4 > m_1 \]

\[w_3 > m_2 > m_1 > m_4 > m_3 > m_4 > m_1 \]

\[w_4 > m_3 > m_2 > m_1 > m_4 > m_1 \]
Tightness Overview

<table>
<thead>
<tr>
<th>m_1</th>
<th>$w_2 > w_3 > w_4 > w_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_2</td>
<td>$w_3 > w_4 > w_1 > w_2$</td>
</tr>
<tr>
<td>m_3</td>
<td>$w_4 > w_1 > w_2 > w_3$</td>
</tr>
<tr>
<td>m_4</td>
<td>$w_1 > w_2 > w_3 > w_4$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>w_1</th>
<th>m_1 (Blacklist: m_4, m_3, m_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_2</td>
<td>$m_2 > m_1 > m_4 > m_3$</td>
</tr>
<tr>
<td>w_3</td>
<td>$m_3 > m_2 > m_1 > m_4$</td>
</tr>
<tr>
<td>w_4</td>
<td>$m_4 > m_3 > m_2 > m_1$</td>
</tr>
</tbody>
</table>
Construction Overview for an Easier Special Case

- Assume that the top choices of men are distinct, i.e. each man serenades under a unique window on the first night.
Construction Overview for an Easier Special Case

- Assume that the top choices of men are distinct, i.e. each man serenades under a unique window on the first night.
- We build a profile of preference lists for the women s.t. each woman prefers $\mu(w)$ most. $\Rightarrow \mu$ is W-optimal.
Construction Overview for an Easier Special Case

- Assume that the top choices of men are distinct, i.e. each man serenades under a unique window on the first night.
- We build a profile of preference lists for the women s.t. each woman prefers $\mu(w)$ most. $\Rightarrow \mu$ is W-optimal.
- Choose a woman \tilde{w} not serenaded-to by $\mu(\tilde{w})$, and have her blacklist her suitor m.

- Let m be repeatedly rejected until serenading to $\mu(m)$, who then rejects her suitor m'.
- Let m' be repeatedly rejected until serenading to $\mu(m')$, who then rejects her suitor \ldots.
- Let $\mu(\tilde{w})$ be repeatedly rejected until serenading to \tilde{w}.
- Only \tilde{w} blacklists anyone. More men have reached their intended partner than have been blacklisted.
- Naïve next step: choose some \tilde{w}' and trigger another rejection cycle.
- Problem: all candidates for the role of \tilde{w}' may have already rejected many men, whom we'd have to blacklist.
Construction Overview for an Easier Special Case

- Assume that the top choices of men are distinct, i.e. each man serenades under a unique window on the first night.
- We build a profile of preference lists for the women s.t. each woman prefers $\mu(w)$ most. $\Rightarrow \mu$ is \mathcal{W}-optimal.
- Choose a woman \tilde{w} not serenaded-to by $\mu(\tilde{w})$, and have her blacklist her suitor m.
- Let m be repeatedly rejected until serenading to $\mu(m)$, who then rejects her suitor m'.
Construction Overview for an Easier Special Case

- Assume that the top choices of men are distinct, i.e. each man serenades under a unique window on the first night.
- We build a profile of preference lists for the women s.t. each woman prefers $\mu(w)$ most. \Rightarrow μ is W-optimal.
- Choose a woman \tilde{w} not serenaded-to by $\mu(\tilde{w})$, and have her blacklist her suitor m.
- Let m be repeatedly rejected until serenading to $\mu(m)$, who then rejects her suitor m'.
- Let m' be repeatedly rejected until serenading to $\mu(m')$, who then rejects her suitor ...
Construction Overview for an Easier Special Case

- Assume that the top choices of men are distinct, i.e. each man serenades under a unique window on the first night.
- We build a profile of preference lists for the women s.t. each woman prefers \(\mu(w) \) most. \(\Rightarrow \mu \) is \(\mathcal{W} \)-optimal.
- Choose a woman \(\tilde{w} \) not serenaded-to by \(\mu(\tilde{w}) \), and have her blacklist her suitor \(m \).
- Let \(m \) be repeatedly rejected until serenading to \(\mu(m) \), who then rejects her suitor \(m' \).
- Let \(m' \) be repeatedly rejected until serenading to \(\mu(m') \), who then rejects her suitor \ldots
- Let \(\mu(\tilde{w}) \) be repeatedly rejected until serenading to \(\tilde{w} \).
Construction Overview for an Easier Special Case

- Assume that the top choices of men are distinct, i.e. each man serenades under a unique window on the first night.
- We build a profile of preference lists for the women s.t. each woman prefers \(\mu(w) \) most. \(\Rightarrow \mu \) is \(\mathcal{W} \)-optimal.
- Choose a woman \(\tilde{w} \) not serenaded-to by \(\mu(\tilde{w}) \), and have her blacklist her suitor \(m \).
- Let \(m \) be repeatedly rejected until serenading to \(\mu(m) \), who then rejects her suitor \(m' \).
- Let \(m' \) be repeatedly rejected until serenading to \(\mu(m') \), who then rejects her suitor \ldots
- Let \(\mu(\tilde{w}) \) be repeatedly rejected until serenading to \(\tilde{w} \).
- Only \(\tilde{w} \) blacklists anyone. More men have reached their intended partner than have been blacklisted.
Construction Overview for an Easier Special Case

- Assume that the top choices of men are distinct, i.e. each man serenades under a unique window on the first night.
- We build a profile of preference lists for the women s.t. each woman prefers $\mu(w)$ most. $\Rightarrow \mu$ is W-optimal.
- Choose a woman \tilde{w} not serenaded-to by $\mu(\tilde{w})$, and have her blacklist her suitor m.
- Let m be repeatedly rejected until serenading to $\mu(m)$, who then rejects her suitor m'.
- Let m' be repeatedly rejected until serenading to $\mu(m')$, who then rejects her suitor . . .
- Let $\mu(\tilde{w})$ be repeatedly rejected until serenading to \tilde{w}.
- Only \tilde{w} blacklists anyone. More men have reached their intended partner than have been blacklisted.
- Naïve next step: choose some \tilde{w}' and trigger another rejection cycle.
Construction Overview for an Easier Special Case

- Assume that the top choices of men are distinct, i.e. each man serenades under a unique window on the first night.
- We build a profile of preference lists for the women s.t. each woman prefers $\mu(w)$ most. $\Rightarrow \mu$ is \mathcal{W}-optimal.
- Choose a woman \tilde{w} not serenaded-to by $\mu(\tilde{w})$, and have her blacklist her suitor m.
- Let m be repeatedly rejected until serenading to $\mu(m)$, who then rejects her suitor m'.
- Let m' be repeatedly rejected until serenading to $\mu(m')$, who then rejects her suitor \ldots.
- Let $\mu(\tilde{w})$ be repeatedly rejected until serenading to \tilde{w}.
- Only \tilde{w} blacklists anyone. More men have reached their intended partner than have been blacklisted.
- Naïve next step: choose some \tilde{w}' and trigger another rejection cycle.
- Problem: all candidates for the role of \tilde{w}' may have already rejected many men, whom we’d have to blacklist.
Construction Overview for an Easier Case (2)

- Problem: all candidates for the role of \tilde{w}' may have already rejected many men, whom we’d have to blacklist.
Construction Overview for an Easier Case (2)

- **Problem:** all candidates for the role of \tilde{w}' may have already rejected many men, whom we’d have to blacklist.

- **Solution:** show that it is possible to carefully “merge” the cycles, i.e. alter the preferences, “without blacklisting excessively-many men”, s.t. the “chain reaction” triggered by \tilde{w} causes all rejections from both rejection cycles.
Construction Overview for an Easier Case (2)

- Problem: all candidates for the role of \tilde{w}' may have already rejected many men, whom we’d have to blacklist.
- Solution: show that it is possible to carefully “merge” the cycles, i.e. alter the preferences, “without blacklisting excessively-many men”, s.t. the “chain reaction” triggered by \tilde{w} causes all rejections from both rejection cycles.
- **Iteratively merge more and more cycles.**
Construction Overview for an Easier Case (2)

- Problem: all candidates for the role of \tilde{w}' may have already rejected many men, whom we’d have to blacklist.
- Solution: show that it is possible to carefully “merge” the cycles, i.e. alter the preferences, “without blacklisting excessively-many men”, s.t. the “chain reaction” triggered by \tilde{w} causes all rejections from both rejection cycles.
- Iteratively merge more and more cycles.
- When no more merging is possibly, every woman w not serenaded-to by $\mu(w)$ has not rejected anyone yet.

• • •

• • •
Construction Overview for an Easier Case (2)

- Problem: all candidates for the role of \tilde{w}' may have already rejected many men, whom we’d have to blacklist.
- Solution: show that it is possible to carefully “merge” the cycles, i.e. alter the preferences, “without blacklisting excessively-many men”, s.t. the “chain reaction” triggered by \tilde{w} causes all rejections from both rejection cycles.
- Iteratively merge more and more cycles.
- When no more merging is possibly, every woman w not serenaded-to by $\mu(w)$ has not rejected anyone yet.
- Such merging can be done without resimulating in every stage.
Construction Overview for an Easier Case (2)

- Problem: all candidates for the role of \tilde{w}' may have already rejected many men, whom we’d have to blacklist.
- Solution: show that it is possible to carefully “merge” the cycles, i.e. alter the preferences, “without blacklisting excessively-many men”, s.t. the “chain reaction” triggered by \tilde{w} causes all rejections from both rejection cycles.
- Iteratively merge more and more cycles.
- When no more merging is possibly, every woman w not serenaded-to by $\mu(w)$ has not rejected anyone yet.
- Such merging can be done without resimulating in every stage.
- Surprising: decisions can be implemented online (“unintuitive algorithm”), if women control the scheduling. Overall time complexity: $\Theta(n^2)$ (optimal).
Construction Overview for an Easier Case (2)

- Problem: all candidates for the role of \tilde{w}' may have already rejected many men, whom we’d have to blacklist.
- Solution: show that it is possible to carefully “merge” the cycles, i.e. alter the preferences, “without blacklisting excessively-many men”, s.t. the “chain reaction” triggered by \tilde{w} causes all rejections from both rejection cycles.
- Iteratively merge more and more cycles.
- When no more merging is possibly, every woman w not serenaded-to by $\mu(w)$ has not rejected anyone yet.
- Such merging can be done without resimulating in every stage.
- Surprising: decisions can be implemented online (“unintuitive algorithm”), if women control the scheduling. Overall time complexity: $\Theta(n^2)$ (optimal).
- General case harder to analyse and slower to compute (and not online). “Conclusion”: the men inadvertently help the women in a sense by trying to force some matching.
Construction Overview: General Case

- No assumption regarding distinctness of top choices.
Construction Overview: General Case

- No assumption regarding distinctness of top choices.
- If we let the algorithm run with arbitrary preferences (s.t. each woman w prefers $\mu(w)$ most) until it converges, then by the time it stops, all “candidates for the role of \tilde{w}” may have already rejected many men.
Construction Overview: General Case

- No assumption regarding distinctness of top choices.
- If we let the algorithm run with arbitrary preferences (s.t. each woman \(w \) prefers \(\mu(w) \) most) until it converges, then by the time it stops, all “candidates for the role of \(\tilde{w} \)” may have already rejected many men.
- Solution: show that there exists a candidate whose rejection cycle can be merged into the above run.
Construction Overview: General Case

• No assumption regarding distinctness of top choices.
• If we let the algorithm run with arbitrary preferences (s.t. each woman \(w \) prefers \(\mu(w) \) most) until it converges, then by the time it stops, all “candidates for the role of \(\tilde{w} \)” may have already rejected many men.
• Solution: show that there exists a candidate whose rejection cycle can be merged into the above run.
• More involved analysis. Requires resimulations to compute. No (known) online method.
Construction Overview: General Case

- No assumption regarding distinctness of top choices.
- If we let the algorithm run with arbitrary preferences (s.t. each woman w prefers $\mu(w)$ most) until it converges, then by the time it stops, all “candidates for the role of \tilde{w}” may have already rejected many men.
- Solution: show that there exists a candidate whose rejection cycle can be merged into the above run.
- More involved analysis. Requires resimulations to compute. No (known) online method.
- Overall time complexity: $O(n^3)$. Avg. case $O(n^2 \log n)$ (due to properties of random permutations).
Construction Overview: General Case

- No assumption regarding distinctness of top choices.
- If we let the algorithm run with arbitrary preferences (s.t. each woman w prefers $\mu(w)$ most) until it converges, then by the time it stops, all “candidates for the role of \tilde{w}” may have already rejected many men.
- Solution: show that there exists a candidate whose rejection cycle can be merged into the above run.
- More involved analysis. Requires resimulations to compute. No (known) online method.
- Overall time complexity: $O(n^3)$. Avg. case $O(n^2 \log n)$ (due to properties of random permutations).
- Extends to unbalanced markets / partial matchings.
Construction Overview: General Case

- No assumption regarding distinctness of top choices.
- If we let the algorithm run with arbitrary preferences (s.t. each woman w prefers $\mu(w)$ most) until it converges, then by the time it stops, all “candidates for the role of \tilde{w}” may have already rejected many men.
- Solution: show that there exists a candidate whose rejection cycle can be merged into the above run.
- More involved analysis. Requires resimulations to compute. No (known) online method.
- Overall time complexity: $O(n^3)$. Avg. case $O(n^2 \log n)$ (due to properties of random permutations).
- Extends to unbalanced markets / partial matchings.
- When unmatched men exist, we’re back to $\Theta(n^2)$. *
Construction Overview: General Case

- No assumption regarding distinctness of top choices.
- If we let the algorithm run with arbitrary preferences (s.t. each woman \(w \) prefers \(\mu(w) \) most) until it converges, then by the time it stops, all “candidates for the role of \(\tilde{w} \)” may have already rejected many men.
- Solution: show that there exists a candidate whose rejection cycle can be merged into the above run.
- More involved analysis. Requires resimulations to compute. No (known) online method.
- Overall time complexity: \(O(n^3) \). Avg. case \(O(n^2 \log n) \) (due to properties of random permutations).
- Extends to unbalanced markets / partial matchings.
- When unmatched men exist, we’re back to \(\Theta(n^2) \).*

 General idea: follow the naïve construction; use these men as “placeholders” to initiate cycles without blacklisting.
Summary

- Answered Gusfield and Irving's 1989 open question, fully characterizing possible optimal blacklist sizes.
Summary

- Answered Gusfield and Irving’s 1989 open question, fully characterizing possible optimal blacklist sizes.

- In balanced markets, what can we deduce regarding the M-optimal stable matching given only the men’s preferences?
Summary

- Answered Gusfield and Irving’s 1989 open question, fully characterizing possible optimal blacklist sizes.

- In balanced markets, what can we deduce regarding the M-optimal stable matching given only the men’s preferences? Not much, really.
Summary

- Answered Gusfield and Irving’s 1989 open question, fully characterizing possible optimal blacklist sizes.

- In balanced markets, what can we deduce regarding the M-optimal stable matching given only the men’s preferences? **Not much, really.**

- Phase change revisited: the preferences of the smaller side have significantly more impact on the stable matchings.
Summary

• Answered Gusfield and Irving’s 1989 open question, fully characterizing possible optimal blacklist sizes.

• In balanced markets, what can we deduce regarding the M-optimal stable matching given only the men’s preferences? Not much, really.

• Phase change revisited: the preferences of the smaller side have significantly more impact on the stable matchings.

• Intuition can be misleading; interesting and surprising results regarding marriage markets still exist.

See the full paper (on arXiv) for the full results.
Summary

• Answered Gusfield and Irving’s 1989 open question, fully characterizing possible optimal blacklist sizes.

• In balanced markets, what can we deduce regarding the M-optimal stable matching given only the men’s preferences? **Not much, really.**

• Phase change revisited: the preferences of the smaller side have significantly more impact on the stable matchings.

• Intuition can be misleading; interesting and surprising results regarding marriage markets still exist.

• See the full paper (on arXiv) for the full results.
Questions?

Thank you!