Bulow-Klemperer-Style Results for Welfare Maximization in Two-Sided Markets

Moshe Babaioff
Microsoft Research

Kira Goldner
Columbia University

Yannai A. Gonczarowski
Microsoft Research

January 8, 2020
Two Sided Markets ("Double Auctions")

- Each of m_S sellers holds one item. All items identical.
- Each of m_B (potential) buyers is interested in (any) one item.
- Each seller j has private cost $s_j \geq 0$ for parting with her item.
- Each buyer i has private value $b_i \geq 0$ for obtaining an item.
- A trade is a specification of a set of sellers (to part with their items) and an equal-sized set of buyers (to obtain these items). Efficient if maximizes the gains from trade:
 $$\sum_{\text{trading buyer } i} b_i - \sum_{\text{trading seller } j} s_j$$
- Goal: a mechanism (function from all values and costs to a trade + payment/charge for each participant) that is:
 - Individually rational (IR) — allows voluntary participation.
 - Incentive compatible (IC) — incentivizes truthful reporting.
 - Weakly budget balanced (BB) — does not lose money ("IR for the auctioneer").
 - Efficient — output trade efficient w.r.t. input costs/values.
Myerson and Satterthwaite’s Seminal Impossibility

VCG is a (generally applicable) IR, IC, efficient mechanism.
- Output efficient trade.
- Charge each trading buyer her minimum trading bid.
- Pay each trading seller her maximum trading bid.

Example

For one buyer with value $b = 10$ and one seller with cost $s = 9$:
Myerson and Sattherthwaite’s Seminal Impossibility

VCG is a (generally applicable) IR, IC, efficient mechanism.

- Output efficient trade.
- Charge each trading buyer her minimum trading bid.
- Pay each trading seller her maximum trading bid.

Example

For one buyer with value $b = 10$ and one seller with cost $s = 9$:
- Efficient trade is to trade the item. (Gains from trade $= 1$)
Myerson and Sattherthwaite’s Seminal Impossibility

VCG is a (generally applicable) IR, IC, efficient mechanism.
- Output efficient trade.
- Charge each trading buyer her minimum trading bid.
- Pay each trading seller her maximum trading bid.

Example

For one buyer with value $b = 10$ and one seller with cost $s = 9$:
- Efficient trade is to trade the item. (Gains from trade $= 1$)
- Buyer's minimum trading bid is 9 \Rightarrow buyer pays 9.
Myerson and Sattherthwaite’s Seminal Impossibility

VCG is a (generally applicable) IR, IC, efficient mechanism.
- Output efficient trade.
- Charge each trading buyer her minimum trading bid.
- Pay each trading seller her maximum trading bid.

Example

For one buyer with value $b = 10$ and one seller with cost $s = 9$:
- Efficient trade is to trade the item. (Gains from trade $= 1$)
- Buyer's minimum trading bid is 9 \Rightarrow buyer pays 9.
- Seller’s maximum trading bid is 10 \Rightarrow seller paid 10.
Myerson and Sattherthwaite’s Seminal Impossibility

VCG is a (generally applicable) IR, IC, efficient mechanism.
- Output efficient trade.
- Charge each trading buyer her minimum trading bid.
- Pay each trading seller her maximum trading bid.

Example

For one buyer with value $b = 10$ and one seller with cost $s = 9$:
- Efficient trade is to trade the item. (Gains from trade $= 1$)
- Buyer’s minimum trading bid is $9 \Rightarrow$ buyer pays 9.
- Seller’s maximum trading bid is $10 \Rightarrow$ seller paid 10.
- **VCG with these inputs runs a deficit of 1! \Rightarrow VCG not BB.**
Myerson and Satterthwaite’s Seminal Impossibility

VCG is a (generally applicable) IR, IC, efficient mechanism.
- Output efficient trade.
- Charge each trading buyer her minimum trading bid.
- Pay each trading seller her maximum trading bid.

Example

For one buyer with value \(b = 10 \) and one seller with cost \(s = 9 \):
- Efficient trade is to trade the item. (Gains from trade = 1)
- Buyer’s minimum trading bid is 9 ⇒ buyer pays 9.
- Seller’s maximum trading bid is 10 ⇒ seller paid 10.
- **VCG with these inputs runs a deficit of 1! ⇒ VCG not BB.**

Theorem (Myerson and Satterthwaite, 1983)

Even for one seller and one buyer \((m_S = m_B = 1)\), there is no mechanism that is IR, IC, BB, and efficient.
The Road to a Positive Result

- “First best” efficiency infeasible!
- “Go to” mechanism design approach: maintain **feasibility** constraints (IR, IC, BB), relax efficiency.
 - Assume values and costs are independently drawn from some distribution, find feasible mechanism with optimal expected efficiency (“second best”).
The Road to a Positive Result

- “First best” efficiency infeasible!
- “Go to” mechanism design approach: maintain \textit{feasibility} constraints (IR, IC, BB), relax efficiency.
 - Assume values and costs are independently drawn from some distribution, find feasible mechanism with optimal expected efficiency (“second best”).
 - Needs to be carefully \textit{tailored to the Bayesian prior}.
 - Known to be extremely \textit{complex}, eludes precise description.
The Road to a Positive Result

• “First best” efficiency infeasible!

• “Go to” mechanism design approach: maintain feasibility constraints (IR, IC, BB), relax efficiency.
 • Assume values and costs are independently drawn from some distribution, find feasible mechanism with optimal expected efficiency (“second best”).
 • Needs to be carefully tailored to the Bayesian prior.
 • Known to be extremely complex, eludes precise description.

⇒ As in many mechanism-design settings, tradeoff between efficiency on the one hand, and on the other hand both mechanism simplicity and amount of knowledge required by mechanism.
The Road Less Traveled by

Will draw inspiration from the one-sided markets literature:
- A canonical setting: one seller with one item; m buyers, each with a private value. Goal: maximize seller’s revenue.
The Road Less Traveled by

Will draw inspiration from the one-sided markets literature:

- A canonical setting: one seller with one item; \(m \) buyers, each with a private value. Goal: maximize seller’s revenue.

- “Go to” approach: assume buyer values drawn, find an IR & IC mechanism that maximizes seller’s expected revenue.

- Optimal mechanism, even for i.i.d. buyers, requires some information about the distributions.
The Road Less Traveled by

Will draw inspiration from the one-sided markets literature:

- A canonical setting: one seller with one item; \(m \) buyers, each with a private value. Goal: maximize seller’s revenue.

- “Go to” approach: assume buyer values drawn, find an IR & IC mechanism that maximizes seller’s expected revenue.

- Optimal mechanism, even for i.i.d. buyers, requires some information about the distributions.

- Bulow-Klemperer (1996): if we can recruit one more similar buyer (=i.i.d. same distribution), we can “beat“ the tradeoff from the last slide: \(\exists \) a simple, prior-independent, feasible (IR & IC) mechanism that in the augmented market gives expected revenue \(\geq \) optimal revenue in the original market.
The Road Less Traveled by

Will draw inspiration from the one-sided markets literature:

- A canonical setting: one seller with one item; \(m \) buyers, each with a private value. Goal: maximize seller’s revenue.
- “Go to” approach: assume buyer values drawn, find an IR & IC mechanism that maximizes seller’s expected revenue.
- Optimal mechanism, even for i.i.d. buyers, requires some information about the distributions.
- Bulow-Klemperer (1996): if we can recruit one more similar buyer (=i.i.d. same distribution), we can “beat“ the tradeoff from the last slide: \(\exists \) a simple, prior-independent, feasible (IR & IC) mechanism that in the augmented market gives expected revenue \(\geq \) optimal revenue in the original market.

Today: Bulow-Klemperer-style results for two-sided markets.
- “Beat the tradeoff”!® A simple, prior-independent, feasible (IR, IC, BB) mechanism that in an augmented market gives expected efficiency \(\geq \) optimal efficiency in the original market.
First Main Result

Setting:
- Market with m_S sellers, m_B buyers.
- Values and costs drawn i.i.d. from a distribution F.
- **Augmented market**: has one more buyer with value drawn independently from F. (m_S sellers, m_B+1 buyers.)

Theorem (First Main Result — Informal)

There exists a simple, prior-independent (=does not require any information about F), IR, IC, BB mechanism such that this mechanism in the augmented market has expected gains from trade at least as high as the optimal-yet-infeasible VCG mechanism in the original market.
First Main Result

Setting:
- Market with m_S sellers, m_B buyers.
- Values and costs drawn i.i.d. from a distribution F.
- **Augmented market**: has one more buyer with value drawn independently from F. (m_S sellers, $m_B + 1$ buyers.)

Theorem (First Main Result — Informal)

There exists a simple, prior-independent (=does not require any information about F), IR, IC, BB mechanism such that this mechanism in the augmented market has expected gains from trade at least as high as the optimal-yet-infeasible VCG mechanism in the original market.

- Same result also if adding a seller rather than a buyer.
 - Aesthetic preference to add buyer: same pre-trade welfare.
 - Same will hold also for all other results we’ll see today.
A Simple Mechanism

A special case: one seller, m_B buyers.

- “Would have wanted” a second-price auction with the seller’s cost as the reserve price. (Efficient and BB!)
A Simple Mechanism

A special case: one seller, \(m_B \) buyers.

- “Would have wanted” a second-price auction with the seller’s cost as the reserve price. (Efficient and BB!)
- Challenge: not IC for seller!
 - Can gain from reporting higher cost.

Instead: “second-price auction with seller veto.”

- First, run among the buyers a second-price auction with no reserve. (Highest-value buyer wins, pays 2nd-highest value.)
- Next, the seller either accepts the result of the second-price auction (gets paid the 2nd-highest buyer value for her item) or vetoes it if the price is lower than her cost (resulting in no trade).

IC for the seller, but not efficient.

- No trade if highest value > seller’s cost > 2nd-highest value.

Nonetheless, we show that efficiency in the augmented market \(\geq \) optimal efficiency in the original market.
A Simple Mechanism

A special case: one seller, m_B buyers.

- “Would have wanted” a second-price auction with the seller’s cost as the reserve price. (Efficient and BB!)
- Challenge: not IC for seller!
 - Can gain from reporting higher cost.

- Instead: “second-price auction with seller veto.”
 - First, run among the buyers a second-price auction with no reserve. (Highest-value buyer wins, pays 2nd-highest value.)
 - Next, the seller either accepts the result of the second-price auction (gets paid the 2nd-highest buyer value for her item) or vetoes it if the price is lower than her cost (resulting in no trade).
A Simple Mechanism

A special case: one seller, m_B buyers.

- “Would have wanted” a second-price auction with the seller’s cost as the reserve price. (Efficient and BB!)
- Challenge: not IC for seller!
 - Can gain from reporting higher cost.

- Instead: “second-price auction with seller veto.”
 - First, run among the buyers a second-price auction with no reserve. (Highest-value buyer wins, pays 2nd-highest value.)
 - Next, the seller either accepts the result of the second-price auction (gets paid the 2nd-highest buyer value for her item) or vetoes it if the price is lower than her cost (resulting in no trade).

- IC for the seller, but not efficient.
 - No trade if highest value $> seller’s cost > 2nd-highest value.$
A Simple Mechanism

A special case: one seller, m_B buyers.

- “Would have wanted” a second-price auction with the seller’s cost as the reserve price. (Efficient and BB!)
- Challenge: not IC for seller!
 - Can gain from reporting higher cost.
- Instead: “second-price auction with seller veto.”
 - First, run among the buyers a second-price auction with no reserve. (Highest-value buyer wins, pays 2nd-highest value.)
 - Next, the seller either accepts the result of the second-price auction (gets paid the 2nd-highest buyer value for her item) or vetoes it if the price is lower than her cost (resulting in no trade).
- IC for the seller, but not efficient.
 - No trade if highest value > seller’s cost > 2nd-highest value.
- Nonetheless, we show that efficiency in the augmented market \geq optimal efficiency in the original market.
A Simple Mechanism: Buyer Trade Reduction (BTR)

Inspired by McAfee’s (1992) classic

Trade Reduction mechanism:

- Sort buyer values in decreasing order, seller costs in increasing order.
- Calculate the efficient trade size q.
- Attempt to trade at the value of buyer $q + 1$ as the price.
- If a trading seller has higher cost than this price: reduce the trade between seller q and buyer q.
- Trade the top $q - 1$ pairs, with all buyers paying the value of the reduced buyer and all sellers being paid the cost of the reduced seller.

Robust (prior-independent, IR, IC, BB) and anonymous.

Theorem (First Main Result — Formal Restatement)

$$\forall m_S, m_B, \forall F: \text{BTR}(m_S, m_B + 1) \geq \text{OPT}(m_S, m_B).$$
A Simple Mechanism: Buyer Trade Reduction (BTR)

Inspired by McAfee’s (1992) classic Trade Reduction mechanism:

- Sort buyer values in decreasing order, seller costs in increasing order.
A Simple Mechanism: Buyer Trade Reduction (BTR)

Inspired by McAfee’s (1992) classic Trade Reduction mechanism:

- Sort buyer values in decreasing order, seller costs in increasing order.

<table>
<thead>
<tr>
<th>Buyers</th>
<th>Sellers</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>70</td>
<td>20</td>
</tr>
<tr>
<td>60</td>
<td>45</td>
</tr>
<tr>
<td>50</td>
<td>75</td>
</tr>
<tr>
<td>20</td>
<td>95</td>
</tr>
</tbody>
</table>
A Simple Mechanism: Buyer Trade Reduction (BTR)

Inspired by McAfee’s (1992) classic Trade Reduction mechanism:

- Sort buyer values in decreasing order, seller costs in increasing order.
- Calculate the efficient trade size q.

<table>
<thead>
<tr>
<th>Buyers</th>
<th>Sellers</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>70</td>
<td>20</td>
</tr>
<tr>
<td>60</td>
<td>45</td>
</tr>
<tr>
<td>50</td>
<td>75</td>
</tr>
<tr>
<td>20</td>
<td>95</td>
</tr>
</tbody>
</table>
A Simple Mechanism: Buyer Trade Reduction (BTR)

Inspired by McAfee’s (1992) classic Trade Reduction mechanism:

- Sort buyer values in decreasing order, seller costs in increasing order.
- Calculate the efficient trade size q.

<table>
<thead>
<tr>
<th>Buyers</th>
<th>Sellers</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>70</td>
<td>20</td>
</tr>
<tr>
<td>60</td>
<td>45</td>
</tr>
<tr>
<td>50</td>
<td>75</td>
</tr>
<tr>
<td>20</td>
<td>95</td>
</tr>
</tbody>
</table>

$q = 3$
A Simple Mechanism: Buyer Trade Reduction (BTR)

Inspired by McAfee’s (1992) classic Trade Reduction mechanism:

- Sort buyer values in decreasing order, seller costs in increasing order.

- Calculate the efficient trade size q.

\[
\begin{array}{|c|c|}
\hline
\text{Buyers} & \text{Sellers} \\
\hline
90 & 10 \\
70 & 20 \\
60 & 45 \\
50 & 75 \\
20 & 95 \\
\hline
\end{array}
\]
A Simple Mechanism: Buyer Trade Reduction (BTR)

Inspired by McAfee’s (1992) classic **Trade Reduction** mechanism:

- Sort buyer values in decreasing order, seller costs in increasing order.
- Calculate the efficient trade size q.
- Attempt to trade at the value of **buyer $q+1$** as the price.

<table>
<thead>
<tr>
<th>Buyers</th>
<th>Sellers</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>70</td>
<td>20</td>
</tr>
<tr>
<td>60</td>
<td>45</td>
</tr>
<tr>
<td>50</td>
<td>75</td>
</tr>
<tr>
<td>20</td>
<td>95</td>
</tr>
</tbody>
</table>

$q = 3$
A Simple Mechanism: Buyer Trade Reduction (BTR)

Inspired by McAfee’s (1992) classic Trade Reduction mechanism:

- Sort buyer values in decreasing order, seller costs in increasing order.
- Calculate the efficient trade size \(q \).
- Attempt to trade at the value of buyer \(q + 1 \) as the price.

<table>
<thead>
<tr>
<th>Buyers</th>
<th>Sellers</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>70</td>
<td>20</td>
</tr>
<tr>
<td>60</td>
<td>45</td>
</tr>
</tbody>
</table>

\(p = 50 \quad 75 \)
\(20 \quad 95 \)

\(q = 3 \)
A Simple Mechanism: Buyer Trade Reduction (BTR)

Inspired by McAfee’s (1992) classic Trade Reduction mechanism:

- Sort buyer values in decreasing order, seller costs in increasing order.
- Calculate the efficient trade size q.
- Attempt to trade at the value of buyer $q+1$ as the price.
- If a trading seller has higher cost than this price:

<table>
<thead>
<tr>
<th>Buyers</th>
<th>Sellers</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>70</td>
<td>20</td>
</tr>
<tr>
<td>60</td>
<td>45</td>
</tr>
<tr>
<td>$p = 50$</td>
<td>75</td>
</tr>
<tr>
<td>20</td>
<td>95</td>
</tr>
</tbody>
</table>
A Simple Mechanism: Buyer Trade Reduction (BTR)

Inspired by McAfee’s (1992) classic

Trade Reduction mechanism:

- Sort buyer values in decreasing order, seller costs in increasing order.
- Calculate the efficient trade size q.
- Attempt to trade at the value of buyer $q + 1$ as the price.
- If a trading seller has higher cost than this price:

<table>
<thead>
<tr>
<th>Buyers</th>
<th>Sellers</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>70</td>
<td>20</td>
</tr>
<tr>
<td>60</td>
<td>45</td>
</tr>
</tbody>
</table>

$q = 3$

$p = 50$

75

20 95
A Simple Mechanism: Buyer Trade Reduction (BTR)

Inspired by McAfee’s (1992) classic Trade Reduction mechanism:

- Sort buyer values in decreasing order, seller costs in increasing order.
- Calculate the efficient trade size q.
- Attempt to trade at the value of buyer $q+1$ as the price.
- If a trading seller has higher cost than this price:

<table>
<thead>
<tr>
<th>Buyers</th>
<th>Sellers</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>70</td>
<td>20</td>
</tr>
<tr>
<td>60</td>
<td>45</td>
</tr>
<tr>
<td>$p = 50$</td>
<td>40</td>
</tr>
<tr>
<td>20</td>
<td>95</td>
</tr>
</tbody>
</table>
A Simple Mechanism: Buyer Trade Reduction (BTR)

Inspired by McAfee’s (1992) classic Trade Reduction mechanism:

- Sort buyer values in decreasing order, seller costs in increasing order. $q = 3$
- Calculate the efficient trade size q.
- Attempt to trade at the value of buyer $q+1$ as the price.
- If a trading seller has higher cost than this price: reduce the trade between seller q and buyer q.

<table>
<thead>
<tr>
<th>Buyers</th>
<th>Sellers</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>70</td>
<td>20</td>
</tr>
<tr>
<td>60</td>
<td>45</td>
</tr>
<tr>
<td>50</td>
<td>75</td>
</tr>
<tr>
<td>20</td>
<td>95</td>
</tr>
</tbody>
</table>
A Simple Mechanism: Buyer Trade Reduction (BTR)

Inspired by McAfee’s (1992) classic Trade Reduction mechanism:

• Sort buyer values in decreasing order, seller costs in increasing order.

• Calculate the efficient trade size q.

• Attempt to trade at the value of buyer $q + 1$ as the price.

• If a trading seller has higher cost than this price: reduce the trade between seller q and buyer q.

<table>
<thead>
<tr>
<th>Buyers</th>
<th>Sellers</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>70</td>
<td>20</td>
</tr>
<tr>
<td>60</td>
<td>45</td>
</tr>
<tr>
<td>50</td>
<td>75</td>
</tr>
<tr>
<td>20</td>
<td>95</td>
</tr>
</tbody>
</table>
A Simple Mechanism: Buyer Trade Reduction (BTR)

Inspired by McAfee’s (1992) classic Trade Reduction mechanism:

- Sort buyer values in decreasing order, seller costs in increasing order.
- Calculate the efficient trade size q.
- Attempt to trade at the value of buyer $q + 1$ as the price.
- If a trading seller has higher cost than this price: reduce the trade between seller q and buyer q.

<table>
<thead>
<tr>
<th>Buyers</th>
<th>Sellers</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>70</td>
<td>20</td>
</tr>
<tr>
<td>60</td>
<td>45</td>
</tr>
<tr>
<td>50</td>
<td>75</td>
</tr>
<tr>
<td>20</td>
<td>95</td>
</tr>
</tbody>
</table>

$q = 3$
A Simple Mechanism: Buyer Trade Reduction (BTR)

Inspired by McAfee’s (1992) classic

Trade Reduction mechanism:

- Sort buyer values in decreasing order, seller costs in increasing order.
- Calculate the efficient trade size \(q \).
- Attempt to trade at the value of buyer \(q+1 \) as the price.
- If a trading seller has higher cost than this price: reduce the trade between seller \(q \) and buyer \(q \). Trade the top \(q-1 \) pairs, with all buyers paying the value of the reduced buyer and all sellers being paid the cost of the reduced seller.

<table>
<thead>
<tr>
<th>Buyers</th>
<th>Sellers</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>70</td>
<td>20</td>
</tr>
<tr>
<td>60</td>
<td>45</td>
</tr>
<tr>
<td>50</td>
<td>75</td>
</tr>
<tr>
<td>20</td>
<td>95</td>
</tr>
</tbody>
</table>

\(q = 3 \)
A Simple Mechanism: Buyer Trade Reduction (BTR)

Inspired by McAfee’s (1992) classic Trade Reduction mechanism:

- Sort buyer values in decreasing order, seller costs in increasing order.
- Calculate the efficient trade size q.
- Attempt to trade at the value of buyer $q+1$ as the price.
- If a trading seller has higher cost than this price: reduce the trade between seller q and buyer q. Trade the top $q-1$ pairs, with all buyers paying the value of the reduced buyer and all sellers being paid the cost of the reduced seller.

<table>
<thead>
<tr>
<th>Buyers</th>
<th>Sellers</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>70</td>
<td>20</td>
</tr>
<tr>
<td>60</td>
<td>45</td>
</tr>
<tr>
<td>50</td>
<td>75</td>
</tr>
<tr>
<td>20</td>
<td>95</td>
</tr>
</tbody>
</table>
A Simple Mechanism: Buyer Trade Reduction (BTR)

Inspired by McAfee’s (1992) classic Trade Reduction mechanism:

- Sort buyer values in decreasing order, seller costs in increasing order.
- Calculate the efficient trade size \(q \).
- Attempt to trade at the value of buyer \(q+1 \) as the price.
- If a trading seller has higher cost than this price: reduce the trade between seller \(q \) and buyer \(q \). Trade the top \(q-1 \) pairs, with all buyers paying the value of the reduced buyer and all sellers being paid the cost of the reduced seller.

<table>
<thead>
<tr>
<th>Buyers</th>
<th>Sellers</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>70</td>
<td>20</td>
</tr>
<tr>
<td>50</td>
<td>75</td>
</tr>
<tr>
<td>20</td>
<td>95</td>
</tr>
</tbody>
</table>

\(p_B = 60 \)
A Simple Mechanism: Buyer Trade Reduction (BTR)

Inspired by McAfee’s (1992) classic Trade Reduction mechanism:

- Sort buyer values in decreasing order, seller costs in increasing order.
- Calculate the efficient trade size \(q \).
- Attempt to trade at the value of buyer \(q+1 \) as the price.
- If a trading seller has higher cost than this price: reduce the trade between seller \(q \) and buyer \(q \). Trade the top \(q-1 \) pairs, with all buyers paying the value of the reduced buyer and all sellers being paid the cost of the reduced seller.

\[
\begin{array}{c|c|c}
\text{Buyers} & \text{Sellers} \\
\hline
90 & 10 \\
70 & 20 \\
50 & 75 \\
40 & 95 \\
\end{array}
\]

\(\overline{PB} = 60 \) \(\overline{PS} = 45 \)
A Simple Mechanism: Buyer Trade Reduction (BTR)

Inspired by McAfee’s (1992) classic

Trade Reduction mechanism:

- Sort buyer values in decreasing order, seller costs in increasing order.
- Calculate the efficient trade size q.
- Attempt to trade at the value of buyer $q+1$ as the price.
- If a trading seller has higher cost than this price: reduce the trade between seller q and buyer q. Trade the top $q-1$ pairs, with all buyers paying the value of the reduced buyer and all sellers being paid the cost of the reduced seller.
- Robust (prior-independent, IR, IC, BB) and anonymous.

Table

<table>
<thead>
<tr>
<th>Buyers</th>
<th>Sellers</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>70</td>
<td>20</td>
</tr>
<tr>
<td>50</td>
<td>75</td>
</tr>
<tr>
<td>20</td>
<td>95</td>
</tr>
</tbody>
</table>

$q = 3 \quad p_B = 60 \leftrightarrow 45 = p_s \quad q - 1 \quad p_B = 60$
A Simple Mechanism: Buyer Trade Reduction (BTR)

Inspired by McAfee’s (1992) classic Trade Reduction mechanism:

- Sort buyer values in decreasing order, seller costs in increasing order.
- Calculate the efficient trade size q.
- Attempt to trade at the value of buyer $q + 1$ as the price.
- If a trading seller has higher cost than this price: reduce the trade between seller q and buyer q. Trade the top $q - 1$ pairs, with all buyers paying the value of the reduced buyer and all sellers being paid the cost of the reduced seller.
- Robust (prior-independent, IR, IC, BB) and anonymous.

<table>
<thead>
<tr>
<th>Buyers</th>
<th>Sellers</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>70</td>
<td>20</td>
</tr>
<tr>
<td>50</td>
<td>75</td>
</tr>
<tr>
<td>20</td>
<td>95</td>
</tr>
</tbody>
</table>

\[p_B = 60 \leftarrow 45 = p_S \]

\[q = 3 \]

\[q - 1 \]

\[\forall m_S, m_B, \forall F : \quad \text{BTR}(m_S, m_B + 1) \geq \text{OPT}(m_S, m_B). \]
Beyond I.I.D.

Proposition

Let M be any anonymous robust deterministic mechanism. For all $\epsilon > 0$, for all m_S, m_B, for all ℓ, k, there exist two distributions F_S and F_B such that $M(m_S + \ell, m_B + k) < \epsilon \cdot \text{OPT}(m_S, m_B)$.

Intuition: if any buyer value is rarely above any seller value (but lots of gains from trade when any is), then slim probability of another buyer value also above that seller value (needed for BTR to not reduce the trade). So, we henceforth assume that F_B first-order stochastically dominates (FSD) F_S to avoid such cases.
Beyond I.I.D.

A strong negative result for augmenting any market size with any number of sellers and/or buyers:

Proposition

Let M be any anonymous robust deterministic mechanism. \(\forall \varepsilon > 0, \forall m_S, m_B, \forall \ell, k, \exists \) two distributions F_S and F_B s.t.

\[
M(m_S + \ell, m_B + k) < \varepsilon \cdot \text{OPT}(m_S, m_B).
\]

Intuition: if any buyer value is rarely above any seller value (but lots of gains from trade when any is), then slim probability of another buyer value also above that seller value (needed for BTR to not reduce the trade). So, we henceforth assume that F_B first-order stochastically dominates (FSD) F_S to avoid such cases.
Beyond I.I.D.

A strong negative result for augmenting any market size with any number of sellers and/or buyers:

Proposition

Let M be any anonymous robust deterministic mechanism. For all $\varepsilon > 0$, for all m_S, m_B, for all ℓ, k, there exist two distributions F_S and F_B such that

$$M(m_S + \ell, m_B + k) < \varepsilon \cdot \text{OPT}(m_S, m_B).$$

Intuition: if any buyer value is rarely above any seller value (but lots of gains from trade when any is), then slim probability of another buyer value also above that seller value (needed for BTR to not reduce the trade).
Beyond I.I.D.

A strong negative result for augmenting any market size with any number of sellers and/or buyers:

Proposition

\[
\text{Let } M \text{ be any anonymous robust deterministic mechanism.} \\
\forall \varepsilon > 0, \forall m_S, m_B, \forall \ell, k, \exists \text{ two distributions } F_S \text{ and } F_B \text{ s.t.} \\
M(m_S + \ell, m_B + k) < \varepsilon \cdot \text{OPT}(m_S, m_B).
\]

Intuition: if any buyer value is rarely above any seller value (but lots of gains from trade when any is), then slim probability of another buyer value also above that seller value (needed for BTR to not reduce the trade).

So, we henceforth assume that \(F_B \) **first-order stochastically dominates (FSD)** \(F_S \) to avoid such cases.
One Seller Stochastically Dominated by One Buyer
One Seller Stochastically Dominated by One Buyer

Quantitative “miss”:

Theorem (Lower Bound for One Seller and One Buyer)

Let M be any anonymous robust deterministic mechanism.
\exists two distributions F_S and F_B, s.t. $F_B \ FSD \ F_S$ and for which

\[M(1, 2) < \text{OPT}(1, 1). \]
One Seller Stochastically Dominated by One Buyer

Quantitative “miss”:

Theorem (Lower Bound for One Seller and One Buyer)

Let M be any anonymous robust deterministic mechanism.\[\exists \text{ two distributions } F_S \text{ and } F_B, \text{ s.t. } F_B \text{ FSD } F_S \text{ and for which}\]

$$M(1, 2) < \text{OPT}(1, 1).$$

Qualitative “hit”:

Theorem (Upper Bound for One Seller and One Buyer)

$$\forall F_B \text{ FSD } F_S : \quad \text{BTR}(1, 1 + 4) \geq \text{OPT}(1, 1).$$
One Seller Stochastically Dominated by Many Buyers

Theorem (Lower Bound for One Seller and Many Buyers)

Let M be any anonymous robust deterministic mechanism. For any k, there exist distributions F_B and F_S such that

$$M(1, m_B + k) < OPT(1, m_B).$$

Theorem (Upper Bound for One Seller and Many Buyers)

For any m_B, all distributions F_S and F_B satisfy

$$BTR(1, m_B + 4\sqrt{m_B}) \geq OPT(1, m_B).$$

Curiously:

$$\inf_{F_S, F_B s.t. F_B \text{ FSD } F_S} BTR(1, m_B) \rightarrow OPT(1, m_B)$$

as $m_B \to \infty.$
One Seller Stochastically Dominated by Many Buyers

Do four extra buyers suffice? Does some other constant suffice?
One Seller Stochastically Domained by Many Buyers

Do four extra buyers suffice? Does some other constant suffice?

Theorem (Lower Bound for One Seller and Many Buyer)

Let M *be any anonymous robust deterministic mechanism.*

$\forall k \exists N$ s.t. $\forall m_B > N \exists$ two distributions F_B FSD F_S s.t.

$$M(1, m_B + k) < \text{OPT}(1, m_B).$$
One Seller Stochastically Dominated by Many Buyers

Do four extra buyers suffice? Does some other constant suffice?

Theorem (Lower Bound for One Seller and Many Buyer)

Let M be any anonymous robust deterministic mechanism.
$\forall k \exists N \text{ s.t. } \forall m_B > N \exists$ two distributions F_B FSD F_S s.t.

$$M(1, m_B + k) < \text{OPT}(1, m_B).$$

Theorem (Upper Bound for One Seller and Many Buyers)

$\forall m_B, \forall F_S$ FSD F_B:

$$\text{BTR}(1, m_B + 4\sqrt{m_B}) \geq \text{OPT}(1, m_B).$$
One Seller Stochastically Dominated by Many Buyers

Do four extra buyers suffice? Does some other constant suffice?

Theorem (Lower Bound for One Seller and Many Buyer)

Let M be any anonymous robust deterministic mechanism. For all k there exists N such that for all $m_B > N$ there exist two distributions F_B FSD F_S such that

$$ M(1, m_B + k) < \text{OPT}(1, m_B). $$

Theorem (Upper Bound for One Seller and Many Buyers)

For all m_B, for all F_S FSD F_B:

$$ \text{BTR}(1, m_B + 4\sqrt{m_B}) \geq \text{OPT}(1, m_B). $$

Curiously:

Theorem

$$ \left(\inf_{F_S, F_B \text{ s.t. } F_B \text{ FSD } F_S} \frac{\text{BTR}(1, m_B)}{\text{OPT}(1, m_B)} \right) \xrightarrow{m_B \to \infty} 1. $$
Result Summary

Bulow-Klemperer-style results:

<table>
<thead>
<tr>
<th>(#S, #B)</th>
<th>Condition</th>
<th>Sufficient #buyers* to add</th>
<th>Insufficient #buyers* to add</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_S, m_B</td>
<td>i.i.d. ((F_B = F_S))</td>
<td>1</td>
<td>0 (MS’83)</td>
</tr>
<tr>
<td>m_S, m_B</td>
<td>any (F_B, F_S)</td>
<td>impossible, by ⇒</td>
<td>any finite number</td>
</tr>
<tr>
<td>1, 1</td>
<td>(F_B) FSD (F_S)</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>1, (m_B)</td>
<td>(F_B) FSD (F_S)</td>
<td>(4 \sqrt{m_B})</td>
<td>⌊log_2 m_B⌋</td>
</tr>
<tr>
<td>m_S, m_B</td>
<td>(F_B) FSD (F_S)</td>
<td>(m_S(m_B+4\sqrt{m_B}))</td>
<td>↑</td>
</tr>
</tbody>
</table>

* Exactly the same bounds also if adding sellers rather than buyers.
Result Summary

Bulow-Klemperer-style results:

<table>
<thead>
<tr>
<th>(#S, #B)</th>
<th>Condition</th>
<th>Sufficient #buyers* to add</th>
<th>Insufficient #buyers* to add</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_S, m_B</td>
<td>i.i.d. ((F_B = F_S))</td>
<td>1</td>
<td>0 (MS’83)</td>
</tr>
<tr>
<td>m_S, m_B</td>
<td>any (F_B, F_S)</td>
<td>impossible, by ⇒</td>
<td>any finite number</td>
</tr>
<tr>
<td>1,1</td>
<td>(F_B \text{ FSD } F_S)</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>1, m_B</td>
<td>(F_B \text{ FSD } F_S)</td>
<td>(4\sqrt{m_B})</td>
<td>([\log_2 m_B])</td>
</tr>
<tr>
<td>m_S, m_B</td>
<td>(F_B \text{ FSD } F_S)</td>
<td>(m_S(m_B + 4\sqrt{m_B}))</td>
<td>↑</td>
</tr>
</tbody>
</table>

* Exactly the same bounds also if adding sellers rather than buyers.

Pricing at a sample (one seller, one buyer):
Result Summary

Bulow-Klemperer-style results:

<table>
<thead>
<tr>
<th>(#S, #B)</th>
<th>Condition</th>
<th>Sufficient #buyers* to add</th>
<th>Insufficient #buyers* to add</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_S, m_B</td>
<td>i.i.d. (F_B = F_S)</td>
<td>1</td>
<td>0 (MS’83)</td>
</tr>
<tr>
<td>m_S, m_B</td>
<td>any (F_B, F_S)</td>
<td>impossible, by (\Rightarrow)</td>
<td>any finite number</td>
</tr>
<tr>
<td>1, 1</td>
<td>(F_B) FSD (F_S)</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>1, m_B</td>
<td>(F_B) FSD (F_S)</td>
<td>(4\sqrt{m_B})</td>
<td>([\log_2 m_B])</td>
</tr>
<tr>
<td>m_S, m_B</td>
<td>(F_B) FSD (F_S)</td>
<td>(m_S(m_B + 4\sqrt{m_B}))</td>
<td>(\uparrow)</td>
</tr>
</tbody>
</table>

* Exactly the same bounds also if adding sellers rather than buyers.

Pricing at a sample (one seller, one buyer):

<table>
<thead>
<tr>
<th>Condition</th>
<th>Guaranteed approximation</th>
<th>Approximation that some distribution does not attain</th>
</tr>
</thead>
<tbody>
<tr>
<td>i.i.d. (F_B = F_S)</td>
<td>1/2</td>
<td>> 1/2</td>
</tr>
</tbody>
</table>
Result Summary

Bulow-Klemperer-style results:

<table>
<thead>
<tr>
<th>(#S, #B)</th>
<th>Condition</th>
<th>Sufficient #buyers* to add</th>
<th>Insufficient #buyers* to add</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_S, m_B</td>
<td>i.i.d. ($F_B = F_S$)</td>
<td>1</td>
<td>0 (MS’83)</td>
</tr>
<tr>
<td>m_S, m_B</td>
<td>any F_B, F_S</td>
<td>impossible, by ⇒</td>
<td>any finite number</td>
</tr>
<tr>
<td>1,1</td>
<td>F_B FSD F_S</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>1, m_B</td>
<td>F_B FSD F_S</td>
<td>$4\sqrt{m_B}$</td>
<td>$\lceil \log_2 m_B \rceil$</td>
</tr>
<tr>
<td>m_S, m_B</td>
<td>F_B FSD F_S</td>
<td>$m_S(m_B + 4\sqrt{m_B})$</td>
<td>↑</td>
</tr>
</tbody>
</table>

* Exactly the same bounds also if adding sellers rather than buyers.

Pricing at a sample (one seller, one buyer):

<table>
<thead>
<tr>
<th>Condition</th>
<th>Guaranteed approximation</th>
<th>Approximation that some distribution does not attain</th>
</tr>
</thead>
<tbody>
<tr>
<td>i.i.d. ($F_B = F_S$)</td>
<td>1/2</td>
<td>> 1/2</td>
</tr>
<tr>
<td>F_B FSD F_S</td>
<td>1/4</td>
<td>> 7/16</td>
</tr>
</tbody>
</table>
Result Summary

Bulow-Klemperer-style results:

<table>
<thead>
<tr>
<th>(#S, #B)</th>
<th>Condition</th>
<th>Sufficient #buyers* to add</th>
<th>Insufficient #buyers* to add</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_S, m_B</td>
<td>i.i.d. (F_B = F_S)</td>
<td>1</td>
<td>0 (MS’83)</td>
</tr>
<tr>
<td>m_S, m_B</td>
<td>any F_B, F_S</td>
<td>impossible, by ⇔</td>
<td>any finite number</td>
</tr>
<tr>
<td>1, 1</td>
<td>F_B FSD F_S</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>1, m_B</td>
<td>F_B FSD F_S</td>
<td>4√m_B</td>
<td>⌊log₂ m_B⌋</td>
</tr>
<tr>
<td>m_S, m_B</td>
<td>F_B FSD F_S</td>
<td>m_S(m_B + 4√m_B)</td>
<td>↑</td>
</tr>
</tbody>
</table>

* Exactly the same bounds also if adding sellers rather than buyers.

Pricing at a sample (one seller, one buyer):

<table>
<thead>
<tr>
<th>Condition</th>
<th>Guaranteed approximation</th>
<th>Approximation that some distribution does not attain</th>
</tr>
</thead>
<tbody>
<tr>
<td>i.i.d. (F_B = F_S)</td>
<td>1/2</td>
<td>> 1/2</td>
</tr>
<tr>
<td>F_B FSD F_S</td>
<td>1/4</td>
<td>> 7/16</td>
</tr>
</tbody>
</table>

Open: all gaps
I.I.D. Proof: \(\text{BTR}(m_S, m_B+1) \geq \text{OPT}(m_S, m_B) \)

- We will prove that
 \[
 \text{OPT}(m_S, m_B+1) - \text{BTR}(m_S, m_B+1) \leq \text{OPT}(m_S, m_B+1) - \text{OPT}(m_S, m_B).
 \]
I.I.D. Proof: \(\text{BTR}(m_S, m_B+1) \geq \text{OPT}(m_S, m_B) \)

- We will prove that
 \[
 \text{OPT}(m_S, m_B+1) - \text{BTR}(m_S, m_B+1) \leq \text{OPT}(m_S, m_B+1) - \text{OPT}(m_S, m_B).
 \]
- Couple markets:
 1. Draw \(m_S + m_B + 1 \) values i.i.d. from \(F \):
 \[
 x^{(1)} \geq \ldots \geq x^{(m_S)} \geq x^{(m_S+1)} \geq \ldots \geq x^{(m_S+m_B+1)}.
 \]
 2. Uniformly at random assign \(m_S \) as sellers, \(m_B \) as old buyers, 1 as new buyer.
I.I.D. Proof: \(BTR(m_S, m_B+1) \geq OPT(m_S, m_B) \)

- We will prove that
 \[OPT(m_S, m_B+1) - BTR(m_S, m_B+1) \leq OPT(m_S, m_B+1) - OPT(m_S, m_B). \]

- Couple markets:
 1. Draw \(m_S + m_B + 1 \) values i.i.d. from \(F \):
 \[x^{(1)} \geq \ldots \geq x^{(m_S)} \geq x^{(m_S+1)} \geq \ldots \geq x^{(m_S+m_B+1)}. \]

 2. Uniformly at random assign \(m_S \) as sellers, \(m_B \) as old buyers, 1 as new buyer.

- For any \(x^{(1)} \geq \ldots \geq x^{(m_S+m_B+1)} \), we will prove in expectation over Step 2 that
 \[E[OPT_{aug}] - E[BTR_{aug}] \leq E[OPT_{aug}] - E[OPT_{orig}]. \]
I.I.D. Proof: \(\text{BTR}(m_S, m_B+1) \geq \text{OPT}(m_S, m_B) \)

- We will prove that
 \[\text{OPT}(m_S, m_B+1) - \text{BTR}(m_S, m_B+1) \leq \text{OPT}(m_S, m_B+1) - \text{OPT}(m_S, m_B). \]
- Couple markets:
 1. Draw \(m_S + m_B + 1 \) values i.i.d. from \(F \):
 \[x^{(1)} \geq \cdots \geq x^{(m_S)} \geq x^{(m_S+1)} \geq \cdots \geq x^{(m_S+m_B+1)}. \]
 trading buyers & nontrading sellers
 2. Uniformly at random assign \(m_S \) as sellers, \(m_B \) as old buyers, 1 as new buyer.
- For any \(x^{(1)} \geq \cdots \geq x^{(m_S+m_B+1)} \), we will prove in expectation over Step 2 that
 \[\mathbb{E}[\text{OPT}_{aug}] - \mathbb{E}[\text{BTR}_{aug}] \leq \mathbb{E}[\text{OPT}_{aug}] - \mathbb{E}[\text{OPT}_{orig}]. \]
I.I.D. Proof: \(\text{BTR}(m_S, m_B+1) \geq \text{OPT}(m_S, m_B) \)

- We will prove that
 \[
 \text{OPT}(m_S, m_B+1) - \text{BTR}(m_S, m_B+1) \leq \text{OPT}(m_S, m_B+1) - \text{OPT}(m_S, m_B).
 \]

- Couple markets:
 1. Draw \(m_S + m_B + 1 \) values i.i.d. from \(F \):
 \[
 x^{(1)} \geq \ldots \geq x^{(m_S)} \geq x^{(m_S+1)} \geq \ldots \geq x^{(m_S+m_B+1)}.
 \]
 - \(x^{(1)} \) and \(x^{(m_S)} \) represent trading buyers and nontrading sellers.
 - \(x^{(m_S+1)} \) and \(x^{(m_S+m_B+1)} \) represent nontrading buyers and trading sellers.
 2. Uniformly at random assign \(m_S \) as sellers, \(m_B \) as old buyers, 1 as new buyer.

- For any \(x^{(1)} \geq \ldots \geq x^{(m_S+m_B+1)} \), we will prove in expectation over Step 2 that
 \[
 \mathbb{E}[\text{OPT}_{aug}] - \mathbb{E}[\text{BTR}_{aug}] \leq \mathbb{E}[\text{OPT}_{aug}] - \mathbb{E}[\text{OPT}_{orig}].
 \]
I.I.D. Proof: $\text{BTR}(m_S, m_B+1) \geq \text{OPT}(m_S, m_B)$

- We will prove that
 \[\text{OPT}(m_S, m_B+1) - \text{BTR}(m_S, m_B+1) \leq \text{OPT}(m_S, m_B+1) - \text{OPT}(m_S, m_B). \]

- Couple markets:
 1. Draw $m_S + m_B + 1$ values i.i.d. from F:
 \[
 \underbrace{x(1) \geq \ldots \geq x(m_S)}_{\text{trading buyers & nontrading sellers}} \geq \underbrace{x(m_S+1) \geq \ldots \geq x(m_S+m_B+1)}_{\text{nontrading buyers & trading sellers}}.
 \]
 2. Uniformly at random assign m_S as sellers, m_B as old buyers, 1 as new buyer.

- For any $x(1) \geq \ldots \geq x(m_S+m_B+1)$, we will prove in expectation over Step 2 that
 \[
 \mathbb{E}[\text{OPT}_{\text{aug}}] - \mathbb{E}[\text{BTR}_{\text{aug}}] \leq \mathbb{E}[\text{OPT}_{\text{aug}}] - \mathbb{E}[\text{OPT}_{\text{orig}}].
 \]
I.I.D. Proof: \(\text{BTR}(m_S, m_B+1) \geq \text{OPT}(m_S, m_B) \)

- We will prove that
 \[
 \text{OPT}(m_S, m_B+1) - \text{BTR}(m_S, m_B+1) \leq \text{OPT}(m_S, m_B+1) - \text{OPT}(m_S, m_B).
 \]

- Couple markets:
 1. Draw \(m_S + m_B + 1 \) values i.i.d. from \(F \):
 \[
 x^{(1)} \geq \cdots \geq x^{(m_S)} \geq x^{(m_S+1)} \geq \cdots \geq x^{(m_S+m_B+1)}.
 \]
 trading buyers & nontrading sellers
 nontrading buyers & trading sellers
 2. Uniformly at random assign \(m_S \) as sellers, \(m_B \) as old buyers, 1 as new buyer.

- For any \(x^{(1)} \geq \cdots \geq x^{(m_S+m_B+1)} \), we will prove in expectation over Step 2 that
 \[
 \mathbb{E}[\text{OPT}_{\text{aug}}] - \mathbb{E}[\text{BTR}_{\text{aug}}] \leq \mathbb{E}[\text{OPT}_{\text{aug}}] - \mathbb{E}[\text{OPT}_{\text{orig}}].
 \]
I.I.D. Proof: \(\text{BTR}(m_S, m_B + 1) \geq \text{OPT}(m_S, m_B) \)

- We will prove that
 \[\text{OPT}(m_S, m_B + 1) - \text{BTR}(m_S, m_B + 1) \leq \text{OPT}(m_S, m_B + 1) - \text{OPT}(m_S, m_B). \]
- Couple markets:
 1. Draw \(m_S + m_B + 1 \) values i.i.d. from \(F \):
 \[x^{(1)} \geq \cdots \geq x^{(m_S)} \geq x^{(m_S+1)} \geq \cdots \geq x^{(m_S+m_B+1)}. \]
 \(\text{trading buyers & nontrading sellers} \)
 \(\text{nontrading buyers & trading sellers} \)
 2. Uniformly at random assign \(m_S \) as sellers, \(m_B \) as old buyers, 1 as new buyer.
- For any \(x^{(1)} \geq \cdots \geq x^{(m_S+m_B+1)} \), we will prove in expectation over Step 2 that
 \[\mathbb{E}[\text{OPT}_{aug}] - \mathbb{E}[\text{BTR}_{aug}] \leq \mathbb{E}[\text{OPT}_{aug}] - \mathbb{E}[\text{OPT}_{orig}]. \]

<table>
<thead>
<tr>
<th>(\mathbb{E}[\text{OPT}{aug}] - \mathbb{E}[\text{BTR}{aug}])</th>
<th>(\mathbb{E}[\text{OPT}{aug}] - \mathbb{E}[\text{OPT}{orig}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{diff} \neq 0 \text{ if ...})</td>
<td>(\text{new buyer in top } m_S)</td>
</tr>
<tr>
<td>(x^{(1)} \cdots x^{(m_S)} x^{(m_S+1)} \cdots)</td>
<td></td>
</tr>
</tbody>
</table>
I.I.D. Proof: $\text{BTR}(m_S, m_B+1) \geq \text{OPT}(m_S, m_B)$

- We will prove that
 $$\text{OPT}(m_S, m_B+1) - \text{BTR}(m_S, m_B+1) \leq \text{OPT}(m_S, m_B+1) - \text{OPT}(m_S, m_B).$$
- Couple markets:
 1. Draw $m_S + m_B + 1$ values i.i.d. from F:
 $$x^{(1)} \geq \ldots \geq x^{(m_S)} \geq x^{(m_S+1)} \geq \ldots \geq x^{(m_S+m_B+1)}.$$
 - trading buyers & nontrading sellers
 - nontrading buyers & trading sellers
 2. Uniformly at random assign m_S as sellers, m_B as old buyers, 1 as new buyer.
- For any $x^{(1)} \geq \ldots \geq x^{(m_S+m_B+1)}$, we will prove in expectation over Step 2 that
 $$\mathbb{E}[\text{OPT}_{\text{aug}}] - \mathbb{E}[\text{BTR}_{\text{aug}}] \leq \mathbb{E}[\text{OPT}_{\text{aug}}] - \mathbb{E}[\text{OPT}_{\text{orig}}].$$

<table>
<thead>
<tr>
<th>diff $\neq 0$ if ...</th>
<th>$\mathbb{E}[\text{OPT}{\text{aug}}] - \mathbb{E}[\text{BTR}{\text{aug}}]$</th>
<th>$\mathbb{E}[\text{OPT}{\text{aug}}] - \mathbb{E}[\text{OPT}{\text{orig}}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Pr[\text{diff} \neq 0]$</td>
<td>$m_S/(m_S + m_B + 1)$</td>
<td>$\text{new buyer in top } m_S$</td>
</tr>
</tbody>
</table>

I.I.D. Proof: \(\text{BTR}(m_S, m_B+1) \geq \text{OPT}(m_S, m_B) \)

- We will prove that
 \[
 \text{OPT}(m_S, m_B+1) - \text{BTR}(m_S, m_B+1) \leq \text{OPT}(m_S, m_B+1) - \text{OPT}(m_S, m_B).
 \]

- Couple markets:
 1. Draw \(m_S + m_B + 1 \) values i.i.d. from \(F \):
 \[
 x^{(1)} \geq \ldots \geq x^{(m_S)} \geq x^{(m_S+1)} \geq \ldots \geq x^{(m_S+m_B+1)}.
 \]

 - Trading buyers & nontrading sellers
 - Nontrading buyers & trading sellers

 2. Uniformly at random assign \(m_S \) as sellers, \(m_B \) as old buyers, 1 as new buyer.

- For any \(x^{(1)} \geq \ldots \geq x^{(m_S+m_B+1)} \), we will prove in expectation over Step 2 that
 \[
 \mathbb{E}[\text{OPT}_{aug}] - \mathbb{E}[\text{BTR}_{aug}] \leq \mathbb{E}[\text{OPT}_{aug}] - \mathbb{E}[\text{OPT}_{orig}].
 \]

<table>
<thead>
<tr>
<th>(\text{diff} \neq 0 \text{ if ...})</th>
<th>(\mathbb{E}[\text{OPT}{aug}] - \mathbb{E}[\text{BTR}{aug}])</th>
<th>(\mathbb{E}[\text{OPT}{aug}] - \mathbb{E}[\text{OPT}{orig}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Pr}[\text{diff} \neq 0])</td>
<td>(x^{(1)} \ldots x^{(m_S)} x^{(m_S+1)} \ldots)</td>
<td>(m_S / (m_S + m_B + 1))</td>
</tr>
<tr>
<td>(\mathbb{E}[\text{OPT}_{aug}])</td>
<td>(x^{(1)} \ldots x^{(m_S)} x^{(m_S+1)} \ldots x^{(m_S+m_B)})</td>
<td></td>
</tr>
</tbody>
</table>
I.I.D. Proof: \(\text{BTR}(m_S, m_B+1) \geq \text{OPT}(m_S, m_B) \)

- We will prove that
 \[
 \text{OPT}(m_S, m_B+1) - \text{BTR}(m_S, m_B+1) \leq \text{OPT}(m_S, m_B+1) - \text{OPT}(m_S, m_B).
 \]

- Couple markets:
 1. Draw \(m_S + m_B + 1 \) values i.i.d. from \(F \):
 \[
 x^{(1)} \geq \cdots \geq x^{(m_S)} \geq x^{(m_S+1)} \geq \cdots \geq x^{(m_S+m_B+1)}.
 \]
 (trading buyers & nontrading sellers) (nontrading buyers & trading sellers)
 2. Uniformly at random assign \(m_S \) as sellers, \(m_B \) as old buyers, 1 as new buyer.

- For any \(x^{(1)} \geq \cdots \geq x^{(m_S+m_B+1)} \), we will prove in expectation over Step 2 that
 \[
 E[\text{OPT}_{aug}] - E[\text{BTR}_{aug}] \leq E[\text{OPT}_{aug}] - E[\text{OPT}_{orig}].
 \]

<table>
<thead>
<tr>
<th>diff (\neq 0) if ...</th>
<th>(E[\text{OPT}{aug}] - E[\text{BTR}{aug}])</th>
<th>(E[\text{OPT}{aug}] - E[\text{OPT}{orig}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Pr}[\text{diff} \neq 0])</td>
<td>(x^{(1)} \ldots x^{(m_S)} x^{(m_S+1)} \ldots)</td>
<td>(m_S/(m_S + m_B + 1))</td>
</tr>
<tr>
<td>(E[\text{OPT}_{aug}])</td>
<td>(x^{(1)} \ldots x^{(m_S)} x^{(m_S+1)} \ldots x^{(m_S+m_B)})</td>
<td></td>
</tr>
</tbody>
</table>
I.I.D. Proof: $\text{BTR}(m_S, m_B+1) \geq \text{OPT}(m_S, m_B)$

- We will prove that
 \[
 \text{OPT}(m_S, m_B+1) - \text{BTR}(m_S, m_B+1) \leq \text{OPT}(m_S, m_B+1) - \text{OPT}(m_S, m_B).
 \]

- Couple markets:
 1. Draw $m_S + m_B + 1$ values i.i.d. from F:
 \[
 x^{(1)} \geq \ldots \geq x^{(m_S)} \geq x^{(m_S+1)} \geq \ldots \geq x^{(m_S+m_B+1)}.
 \]
 - Trading buyers & nontrading sellers
 - Nontrading buyers & trading sellers
 2. Uniformly at random assign m_S as sellers, m_B as old buyers, 1 as new buyer.

- For any $x^{(1)} \geq \ldots \geq x^{(m_S+m_B+1)}$, we will prove in expectation over Step 2 that
 \[
 \mathbb{E}[\text{OPT}_{aug}] - \mathbb{E}[\text{BTR}_{aug}] \leq \mathbb{E}[\text{OPT}_{aug}] - \mathbb{E}[\text{OPT}_{orig}].
 \]

<table>
<thead>
<tr>
<th>diff ≠ 0 if ...</th>
<th>$\mathbb{E}[\text{OPT}{aug}] - \mathbb{E}[\text{BTR}{aug}]$ if $x^{(1)} \geq \ldots \geq x^{(m_S)} \geq x^{(m_S+1)} \geq \ldots \geq x^{(m_S+m_B+1)}$ if new buyer in top m_S</th>
<th>$\mathbb{E}[\text{OPT}{aug}] - \mathbb{E}[\text{OPT}{orig}]$ if $m_S/(m_S + m_B + 1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr[diff ≠ 0]</td>
<td>$\mathbb{E}[\text{OPT}_{aug}]$ if $x^{(1)} \geq \ldots \geq x^{(m_S)} \geq x^{(m_S+1)} \geq \ldots \geq x^{(m_S+m_B)}$</td>
<td>$\mathbb{E}[\text{OPT}_{aug}]$ if new buyer in top m_S</td>
</tr>
<tr>
<td>$\mathbb{E}[\text{OPT}_{aug}]$</td>
<td>$\mathbb{E}[\text{OPT}_{aug}]$ if $x^{(1)} \geq \ldots \geq x^{(m_S)} \geq x^{(m_S+1)} \geq \ldots \geq x^{(m_S+m_B)}$</td>
<td>$\mathbb{E}[\text{OPT}_{aug}]$ if new buyer in top m_S</td>
</tr>
<tr>
<td>minus ...</td>
<td>$\mathbb{E}[\text{OPT}_{aug}]$ if $x^{(1)} \geq \ldots \geq x^{(m_S)} \geq x^{(m_S+1)} \geq \ldots \geq x^{(m_S+m_B)}$</td>
<td>$\mathbb{E}[\text{OPT}_{aug}]$ if new buyer in top m_S</td>
</tr>
</tbody>
</table>

Yannai A. Gonczarowski (MSR)
Bulow-Klemperer Results for Welfare Maximization in Two-Sided Markets
Jan 8, 2020 13 / 14
I.I.D. Proof: \(\text{BTR}(m_S, m_B+1) \geq \text{OPT}(m_S, m_B) \)

- We will prove that
 \[
 \text{OPT}(m_S, m_B+1) - \text{BTR}(m_S, m_B+1) \leq \text{OPT}(m_S, m_B+1) - \text{OPT}(m_S, m_B).
 \]

- Couple markets:
 1. Draw \(m_S + m_B + 1 \) values i.i.d. from \(F \):
 \[
 x^{(1)} \geq \ldots \geq x^{(m_S)} \geq x^{(m_S+1)} \geq \ldots \geq x^{(m_S+m_B+1)}.
 \]
 trading buyers & nontrading sellers

 2. Uniformly at random assign \(m_S \) as sellers, \(m_B \) as old buyers, 1 as new buyer.

- For any \(x^{(1)} \geq \ldots \geq x^{(m_S+m_B+1)} \), we will prove in expectation over Step 2 that
 \[
 \mathbb{E}[\text{OPT}_{aug}] - \mathbb{E}[\text{BTR}_{aug}] \leq \mathbb{E}[\text{OPT}_{aug}] - \mathbb{E}[\text{OPT}_{orig}].
 \]
I.I.D. Proof: \(\text{BTR}(m_S, m_B+1) \geq \text{OPT}(m_S, m_B) \)

- We will prove that
 \[\text{OPT}(m_S, m_B+1) - \text{BTR}(m_S, m_B+1) \leq \text{OPT}(m_S, m_B+1) - \text{OPT}(m_S, m_B). \]

- Couple markets:
 1. Draw \(m_S + m_B + 1 \) values i.i.d. from \(F \):
 \[
 x^{(1)} \geq \ldots \geq x^{(m_S)} \geq x^{(m_S+1)} \geq \ldots \geq x^{(m_S+m_B+1)}.
 \]

 2. Uniformly at random assign \(m_S \) as sellers, \(m_B \) as old buyers, 1 as new buyer.

- For any \(x^{(1)} \geq \ldots \geq x^{(m_S+m_B+1)} \), we will prove in expectation over Step 2 that
 \[\mathbb{E}[\text{OPT}_{\text{aug}}] - \mathbb{E}[\text{BTR}_{\text{aug}}] \leq \mathbb{E}[\text{OPT}_{\text{aug}}] - \mathbb{E}[\text{OPT}_{\text{orig}}]. \]

diff \(\neq 0 \) if ...	\(x^{(1)} \) \ldots \(x^{(m_S)} \) \(x^{(m_S+1)} \) \ldots	\(m_S / (m_S + m_B + 1) \)
\(\mathbb{P}[\text{diff} \neq 0] \)	\(x^{(1)} \) \ldots \(x^{(m_S)} \) \(x^{(m_S+1)} \) \ldots	\(m_S / (m_S + m_B + 1) \)
\(\mathbb{E}[\text{OPT}_{\text{aug}}] \)	\(x^{(1)} \) \ldots \(x^{(m_S)} \) \(x^{(m_S+1)} \) \ldots \(x^{(m_S+m_B)} \)	\(\mathbb{E}[\text{OPT}_{\text{aug}}] - \mathbb{E}[\text{OPT}_{\text{orig}}] \)
minus ...	\(x^{(1)} \) \ldots \(x^{(\nu)} \) \ldots \(x^{(m_S)} \) \(x^{(m_S+1)} \) \ldots	
I.I.D. Proof: \(\text{BTR}(m_S, m_B+1) \geq \text{OPT}(m_S, m_B) \)

- We will prove that
 \[
 \text{OPT}(m_S, m_B+1) - \text{BTR}(m_S, m_B+1) \leq \text{OPT}(m_S, m_B+1) - \text{OPT}(m_S, m_B).
 \]

- Couple markets:
 1. Draw \(m_S + m_B + 1 \) values i.i.d. from \(F \):
 \[
 x^{(1)} \geq \cdots \geq x^{(m_S)} \geq x^{(m_S+1)} \geq \cdots \geq x^{(m_S+m_B+1)}.
 \]
 Trading buyers & nontrading sellers

 2. Uniformly at random assign \(m_S \) as sellers, \(m_B \) as old buyers, 1 as new buyer.

- For any \(x^{(1)} \geq \cdots \geq x^{(m_S+m_B+1)} \), we will prove in expectation over Step 2 that
 \[
 E[\text{OPT}_{aug}] - E[\text{BTR}_{aug}] \leq E[\text{OPT}_{aug}] - E[\text{OPT}_{orig}].
 \]

<table>
<thead>
<tr>
<th>(E[\text{OPT}{aug}] - E[\text{BTR}{aug}])</th>
<th>(E[\text{OPT}{aug}] - E[\text{OPT}{orig}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>diff (\neq 0) if ...</td>
<td>new buyer in top (m_S)</td>
</tr>
<tr>
<td>(x^{(1)} \ldots \geq x^{(m_S)} \geq x^{(m_S+1)} \ldots)</td>
<td>(\frac{m_S}{m_S + m_B + 1})</td>
</tr>
<tr>
<td>Pr[diff (\neq 0)]</td>
<td>(m_S/(m_S + m_B + 1))</td>
</tr>
<tr>
<td>(E[\text{OPT}_{aug}])</td>
<td>(\text{new buyer})</td>
</tr>
<tr>
<td>minus ...</td>
<td>(\downarrow)</td>
</tr>
<tr>
<td>(x^{(1)} \ldots \geq x^{(\nu)} \ldots \geq x^{(m_S)} \geq x^{(m_S+1)} \ldots)</td>
<td></td>
</tr>
</tbody>
</table>
I.I.D. Proof: \(\text{BTR}(m_S, m_B+1) \geq \text{OPT}(m_S, m_B) \)

- We will prove that
 \[
 \text{OPT}(m_S, m_B+1) - \text{BTR}(m_S, m_B+1) \leq \text{OPT}(m_S, m_B+1) - \text{OPT}(m_S, m_B).
 \]
- Couple markets:
 1. Draw \(m_S + m_B + 1 \) values i.i.d. from \(F \):
 \[
 x^{(1)} \geq \ldots \geq x^{(m_S)} \geq x^{(m_S+1)} \geq \ldots \geq x^{(m_S+m_B+1)}.
 \]
 trading buyers & nontrading sellers
 nontrading buyers & trading sellers
 2. Uniformly at random assign \(m_S \) as sellers, \(m_B \) as old buyers, 1 as new buyer.
- For any \(x^{(1)} \geq \ldots \geq x^{(m_S+m_B+1)} \), we will prove in expectation over Step 2 that
 \[
 \mathbb{E}[\text{OPT}_{\text{aug}}] - \mathbb{E}[\text{BTR}_{\text{aug}}] \leq \mathbb{E}[\text{OPT}_{\text{aug}}] - \mathbb{E}[\text{OPT}_{\text{orig}}].
 \]
I.I.D. Proof: \(\text{BTR}(m_S, m_B+1) \geq \text{OPT}(m_S, m_B) \)

- We will prove that
 \[
 \text{OPT}(m_S, m_B+1) - \text{BTR}(m_S, m_B+1) \leq \text{OPT}(m_S, m_B+1) - \text{OPT}(m_S, m_B).
 \]

- Couple markets:
 1. Draw \(m_S + m_B + 1 \) values i.i.d. from \(F \):
 \[
 x^{(1)} \geq \ldots \geq x^{(m_S)} \geq x^{(m_S+1)} \geq \ldots \geq x^{(m_S+m_B+1)}.
 \]
 trading buyers & nontrading sellers
 nontrading buyers & trading sellers
 2. Uniformly at random assign \(m_S \) as sellers, \(m_B \) as old buyers, 1 as new buyer.

- For any \(x^{(1)} \geq \ldots \geq x^{(m_S+m_B+1)} \), we will prove in expectation over Step 2 that
 \[
 \mathbb{E}[\text{OPT}_{\text{aug}}] - \mathbb{E}[\text{BTR}_{\text{aug}}] \leq \mathbb{E}[\text{OPT}_{\text{aug}}] - \mathbb{E}[\text{OPT}_{\text{orig}}].
 \]

<table>
<thead>
<tr>
<th>diff (\neq 0) if ...</th>
<th>(\mathbb{E}[\text{OPT}{\text{aug}}] - \mathbb{E}[\text{BTR}{\text{aug}}])</th>
<th>(\mathbb{E}[\text{OPT}{\text{aug}}] - \mathbb{E}[\text{OPT}{\text{orig}}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Pr}[\text{diff} \neq 0])</td>
<td>(m_S/(m_S + m_B + 1))</td>
<td>(m_S/(m_S + m_B + 1))</td>
</tr>
<tr>
<td>(\mathbb{E}[\text{OPT}_{\text{aug}}])</td>
<td>(x^{(1)} \ldots x^{(m_S)} x^{(m_S+1)} \ldots x^{(m_S+m_B)})</td>
<td>(\text{new buyer in top } m_S)</td>
</tr>
<tr>
<td>minus ...</td>
<td>new buyer</td>
<td>(x^{(1)} \ldots x^{(\nu)} \ldots x^{(m_S)} x^{(m_S+1)} \ldots)</td>
</tr>
</tbody>
</table>
I.I.D. Proof: \(BTR(m_S, m_B+1) \geq OPT(m_S, m_B) \)

- We will prove that
 \[
 OPT(m_S, m_B+1) - BTR(m_S, m_B+1) \leq OPT(m_S, m_B+1) - OPT(m_S, m_B).
 \]

- Couple markets:
 1. Draw \(m_S + m_B + 1 \) values i.i.d. from \(F \):

 \[
 x^{(1)} \geq \ldots \geq x^{(m_S)} \geq x^{(m_S+1)} \geq \ldots \geq x^{(m_S+m_B+1)}.
 \]

 trading buyers & nontrading sellers

 nontrading buyers & trading sellers

 2. Uniformly at random assign \(m_S \) as sellers, \(m_B \) as old buyers, 1 as new buyer.

- For any \(x^{(1)} \geq \ldots \geq x^{(m_S+m_B+1)} \), we will prove in expectation over Step 2 that

 \[
 E[OPT_{aug}] - E[BTR_{aug}] \leq E[OPT_{aug}] - E[OPT_{orig}].
 \]

<table>
<thead>
<tr>
<th>diff (\neq 0) if ...</th>
<th>(E[OPT_{aug}] - E[BTR_{aug}])</th>
<th>(E[OPT_{aug}] - E[OPT_{orig}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr[diff (\neq 0)]</td>
<td>(m_S / (m_S + m_B + 1))</td>
<td>(m_S / (m_S + m_B + 1))</td>
</tr>
<tr>
<td>(E[OPT_{aug}])</td>
<td>(x^{(1)} \ldots x^{(m_S)}) (x^{(m_S+1)} \ldots)</td>
<td></td>
</tr>
<tr>
<td>minus ...</td>
<td>(x^{(1)} \ldots x^{(\nu)} \ldots x^{(m_S)}) (x^{(m_S+1)} \ldots)</td>
<td></td>
</tr>
</tbody>
</table>
I.I.D. Proof: \(\text{BTR}(m_S, m_B + 1) \geq \text{OPT}(m_S, m_B) \)

- We will prove that
 \[
 \text{OPT}(m_S, m_B + 1) - \text{BTR}(m_S, m_B + 1) \leq \text{OPT}(m_S, m_B + 1) - \text{OPT}(m_S, m_B).
 \]

- Couple markets:
 1. Draw \(m_S + m_B + 1 \) values i.i.d. from \(F \):
 \[
 x^{(1)} \geq \ldots \geq x^{(m_S)} \geq x^{(m_S + 1)} \geq \ldots \geq x^{(m_S + m_B + 1)}.
 \]
 - \(x^{(1)} \geq \ldots \geq x^{(m_S)} \): trading buyers & nontrading sellers
 - \(x^{(m_S + 1)} \geq \ldots \geq x^{(m_S + m_B + 1)} \): nontrading buyers & trading sellers
 2. Uniformly at random assign \(m_S \) as sellers, \(m_B \) as old buyers, 1 as new buyer.

- For any \(x^{(1)} \geq \ldots \geq x^{(m_S + m_B + 1)} \), we will prove in expectation over Step 2 that
 \[
 E[\text{OPT}_{\text{aug}}] - E[\text{BTR}_{\text{aug}}] \leq E[\text{OPT}_{\text{aug}}] - E[\text{OPT}_{\text{orig}}].
 \]

<table>
<thead>
<tr>
<th>diff ≠ 0 if ...</th>
<th>(E[\text{OPT}{\text{aug}}] - E[\text{BTR}{\text{aug}}])</th>
<th>(E[\text{OPT}{\text{aug}}] - E[\text{OPT}{\text{orig}}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr[diff ≠ 0]</td>
<td>(m_S / (m_S + m_B + 1)) = (m_S / (m_S + m_B + 1))</td>
<td></td>
</tr>
<tr>
<td>(E[\text{OPT}_{\text{aug}}])</td>
<td>(x^{(1)} \ldots x^{(m_S)} x^{(m_S + 1)} \ldots x^{(m_S + m_B)})</td>
<td>(x^{(1)} \ldots x^{(m_S)} x^{(m_S + 1)} \ldots x^{(m_S + m_B)})</td>
</tr>
<tr>
<td>minus ...</td>
<td>(x^{(1)} \ldots x^{(\alpha)} \ldots x^{(m_S)} x^{(m_S + 1)} \ldots)</td>
<td>(x^{(1)} \ldots x^{(\nu)} \ldots x^{(m_S)} x^{(m_S + 1)} \ldots)</td>
</tr>
</tbody>
</table>
I.I.D. Proof: \(\text{BTR}(m_S, m_B+1) \geq \text{OPT}(m_S, m_B) \)

- We will prove that
 \[
 \text{OPT}(m_S, m_B+1) - \text{BTR}(m_S, m_B+1) \leq \text{OPT}(m_S, m_B+1) - \text{OPT}(m_S, m_B).
 \]

- Couple markets:
 1. Draw \(m_S + m_B + 1 \) values i.i.d. from \(F \):

 - Trading buyers and nontrading sellers: \(x^{(1)} \geq \cdots \geq x^{(m_B)} \geq x^{(m_S+1)} \geq \cdots \geq x^{(m_S+m_B+1)} \)

 - Nontrading buyers and trading sellers: \(x^{(1)} \geq \cdots \geq x^{(m_S)} \geq x^{(m_S+1)} \geq \cdots \geq x^{(m_S+m_B+1)} \)

 2. Uniformly at random assign \(m_S \) as sellers, \(m_B \) as old buyers, 1 as new buyer.

- For any \(x^{(1)} \geq \cdots \geq x^{(m_S+m_B+1)} \), we will prove in expectation over Step 2 that
 \[
 \mathbb{E}[\text{OPT}_{aug}] - \mathbb{E}[\text{BTR}_{aug}] \leq \mathbb{E}[\text{OPT}_{aug}] - \mathbb{E}[\text{OPT}_{orig}].
 \]

<table>
<thead>
<tr>
<th>(\text{diff} \neq 0 \text{ if ...})</th>
<th>(\mathbb{E}[\text{OPT}{aug}] - \mathbb{E}[\text{BTR}{aug}])</th>
<th>(\mathbb{E}[\text{OPT}{aug}] - \mathbb{E}[\text{OPT}{orig}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Pr[\text{diff} \neq 0])</td>
<td>(m_S/(m_S + m_B + 1))</td>
<td>(m_S/(m_S + m_B + 1))</td>
</tr>
<tr>
<td>(\mathbb{E}[\text{OPT}_{aug}])</td>
<td>(x^{(1)} \cdots x^{(m_S)} x^{(m_S+1)} \cdots x^{(m_S+m_B)})</td>
<td>(x^{(1)} \cdots x^{(m_S)} x^{(m_S+1)} \cdots x^{(m_S+m_B)})</td>
</tr>
<tr>
<td>minus ...</td>
<td>(x^{(1)} \cdots x^{(\alpha)} \cdots x^{(m_S)} x^{(m_S+1)} \cdots)</td>
<td>(x^{(1)} \cdots x^{(\nu)} \cdots x^{(m_S)} x^{(m_S+1)} \cdots)</td>
</tr>
</tbody>
</table>

\[\Pr[\text{diff} \neq 0] = \frac{m_S}{(m_S + m_B + 1)} \]
I.I.D. Proof: BTR\((m_S, m_B+1) \geq \text{OPT}(m_S, m_B)\)

- We will prove that
 \[
 \text{OPT}(m_S, m_B+1) - \text{BTR}(m_S, m_B+1) \leq \text{OPT}(m_S, m_B+1) - \text{OPT}(m_S, m_B).
 \]

- Couple markets:
 1. Draw \(m_S + m_B + 1\) values i.i.d. from \(F\):

 \[
 x^{(1)} \geq \ldots \geq x^{(m_S)} \geq x^{(m_S+1)} \geq \ldots \geq x^{(m_S+m_B+1)}.
 \]

 trading buyers & nontrading sellers | nontrading buyers & trading sellers

 2. Uniformly at random assign \(m_S\) as sellers, \(m_B\) as old buyers, 1 as new buyer.

- For any \(x^{(1)} \geq \ldots \geq x^{(m_S+m_B+1)}\), we will prove in expectation over Step 2 that

 \[
 \mathbb{E}[\text{OPT}_{\text{aug}}] - \mathbb{E}[\text{BTR}_{\text{aug}}] \leq \mathbb{E}[\text{OPT}_{\text{aug}}] - \mathbb{E}[\text{OPT}_{\text{orig}}].
 \]
I.I.D. Proof: \(\text{BTR}(m_S, m_B + 1) \geq \text{OPT}(m_S, m_B) \)

- We will prove that
 \[\text{OPT}(m_S, m_B + 1) - \text{BTR}(m_S, m_B + 1) \leq \text{OPT}(m_S, m_B + 1) - \text{OPT}(m_S, m_B). \]
- Couple markets:
 1. Draw \(m_S + m_B + 1 \) values i.i.d. from \(F \):
 \[x^{(1)} \geq \ldots \geq x^{(m_S)} \geq x^{(m_S + 1)} \geq \ldots \geq x^{(m_S + m_B + 1)}. \]
 - Trading buyers & nontrading sellers
 - Nontrading buyers & trading sellers
 2. Uniformly at random assign \(m_S \) as sellers, \(m_B \) as old buyers, 1 as new buyer.
- For any \(x^{(1)} \geq \ldots \geq x^{(m_S + m_B + 1)} \), we will prove in expectation over Step 2 that
 \[\mathbb{E}[\text{OPT}_{\text{aug}}] - \mathbb{E}[\text{BTR}_{\text{aug}}] \leq \mathbb{E}[\text{OPT}_{\text{aug}}] - \mathbb{E}[\text{OPT}_{\text{orig}}]. \]

<table>
<thead>
<tr>
<th>diff (\neq 0) if ...</th>
<th>(\mathbb{E}[\text{OPT}{\text{aug}}] - \mathbb{E}[\text{BTR}{\text{aug}}])</th>
<th>(\mathbb{E}[\text{OPT}{\text{aug}}] - \mathbb{E}[\text{OPT}{\text{orig}}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr[diff (\neq 0)]</td>
<td>(\frac{m_S}{m_S + m_B + 1})</td>
<td>(\frac{m_S}{m_S + m_B + 1})</td>
</tr>
<tr>
<td>(\mathbb{E}[\text{OPT}_{\text{aug}}])</td>
<td>(x^{(1)} \ldots x^{(m_S)} x^{(m_S + 1)} \ldots x^{(m_S + m_B)})</td>
<td>(x^{(1)} \ldots x^{(m_S)} x^{(m_S + 1)} \ldots x^{(m_S + m_B)})</td>
</tr>
<tr>
<td>minus ...</td>
<td>(x^{(1)} \ldots x^{(\alpha)} x^{(m_S)} x^{(m_S + 1)} \ldots) (\downarrow) buyer q</td>
<td>(x^{(1)} \ldots x^{(\nu)} \ldots x^{(m_S)} x^{(m_S + 1)} \ldots) (\downarrow) new buyer</td>
</tr>
<tr>
<td>diff + (x^{(m_S + 1)})</td>
<td>min of (q \geq 1) vals (\sim U({x^{(1)}, \ldots , x^{(m_S)}}))</td>
<td>val (\sim U({x^{(1)}, \ldots , x^{(m_S)}}))</td>
</tr>
</tbody>
</table>
I.I.D. Proof: \(\text{BTR}(m_S, m_B + 1) \geq \text{OPT}(m_S, m_B) \)

- We will prove that
 \[
 \text{OPT}(m_S, m_B + 1) - \text{BTR}(m_S, m_B + 1) \leq \text{OPT}(m_S, m_B + 1) - \text{OPT}(m_S, m_B).
 \]

- Couple markets:
 1. Draw \(m_S + m_B + 1 \) values i.i.d. from \(F \):
 \[
 x^{(1)} \geq \ldots \geq x^{(m_S)} \geq x^{(m_S+1)} \geq \ldots \geq x^{(m_S+m_B+1)}.
 \]
 - Trading buyers & nontrading sellers
 - Nontrading buyers & trading sellers

 2. Uniformly at random assign \(m_S \) as sellers, \(m_B \) as old buyers, 1 as new buyer.

- For any \(x^{(1)} \geq \ldots \geq x^{(m_S+m_B+1)} \), we will prove in expectation over Step 2 that
 \[
 \mathbb{E}[\text{OPT}_{aug}] - \mathbb{E}[\text{BTR}_{aug}] \leq \mathbb{E}[\text{OPT}_{aug}] - \mathbb{E}[\text{OPT}_{orig}].
 \]
Questions?

Thank you!

"Sorry, no trades. Cash only."