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The Stable Matching Problem (Gale&Shapley 1962)

• Two disjoint finite sets: women W and men M.
• One-to-one.
• Assume |W | = |M| for now.

• A preferences list for each woman and for each man.
• Strictly ordered.
• The blacklist is the set of those not on the preference list.

• The goal: a stable matching.
• M-rational: No man is matched with a woman from his

blacklist.
• W -rational: No woman is matched with a man from her

blacklist.
• If w and m are not matched, then at least one of them

prefers their spouse (or lack thereof) over the other.

Roth (2002)

“Successful matching mechanisms produce stable outcomes.”
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Gale-Shapley and M-Optimality

Gale and Shapley (1962)

A stable matching exists for every profile of preference lists.
An efficient algorithm for finding the (unique) M-optimal one.

McVitie and Wilson (1971)

TheM-optimal stable matching = theW -worst stable matching.

Dubins and Freedman (1981)

No man can gain from unilaterally manipulating the M-optimal
stable matching.

Gale and Sotomayor (1985)

Generally, there is a woman who would be better off lying when
the M-optimal stable matching is used.
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Full-Side Manipulation

The coalition of all men can force any W -rational perfect
matching as the M-optimal stable one. (Distinct top choices.)

Gale and Sotomayor (1985)

The coalition of all women can force the W -optimal stable
matching as the M-optimal one by truncating preference lists.

• Requires blacklists.

• Possibly long blacklists.

• Possibly each of size |M| − 1.

• Conspiracy is painfully obvious.

Gusfield and Irving (1989)

No results are known regarding achieving this by any means
other than such preference-list truncation, i.e. by also
permuting preference lists.
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A Short Poll

Define n, |W |= |M|. The women may force the W -optimal
stable matching as the M-optimal one, using a profile of
preference lists with average blacklist size no more than . . .
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Answering Gusfield and Irving’s Open Question

Summary of Main Result (Weak Version)

• The women may force any M-rational perfect matching as
the unique stable matching, using a profile of preference
lists in which at most half of the women have blacklists,
and in which the average blacklist size is less than 1.

(Compare to each woman having a blacklist size of |M|-1.)

• Each of these bounds is tight: it cannot be improved upon.

• This profile of preference lists may be computed efficiently.

• Generally, many such profiles of preference lists exist.

A far more “inconspicuous” manipulation,

esp. if preference-list
lengths are bounded (e.g. New York High School Match).

If women pay a price for every man they blacklist, then
order-of-magnitude improvement.
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Unbalanced Markets and Partial Matchings

A Phase Change

• When there are less women than men (and all women are
to be matched), no blacklists are required whatsoever.

• When there are more women than men (or if not all
women are to be matched), each to-be-unmatched woman
may have to blacklist as many as all men.

• Ashlagi et al. (2013) show a similar phase change w.r.t.
the expected ranking of the stable partners of each
participant on this participant’s preference list in a random
market. (log n vs. n/log n)

• (cf. the shoe market.)

• Completely different proofs.
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may have to blacklist as many as all men.

• Ashlagi et al. (2013) show a similar phase change w.r.t.
the expected ranking of the stable partners of each
participant on this participant’s preference list in a random
market. (log n vs. n/log n)

• (cf. the shoe market.)

• Completely different proofs.
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Improved Insight into Matching Markets

Both phase-change results lead to a similar conclusion in
different senses:

The preferences of the smaller side of the market (even if only
slightly smaller) play a far more significant role than may be
expected in determining the stable matchings, and those of the
larger side — a considerably insignificant one.

In a sense, our results extend this qualitative statement from a
random matching market to any matching market.

More generally: our results shed light on the question of how
much, if at all, do given preferences for one side a priori impose
limitations on the set of stable matchings under various
conditions.
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“Example Insight”: Goods Allocation Problems
In goods allocation problems, only one of the sides (the buyers)
has preferences.

• AS03 and A+09 consider using a version of the
(student-optimal) Gale-Shapley algorithm for assigning
school seats to children.

• School priorities are very coarse (and sometimes
nonexistent, e.g. NYC High School Match), so a
tie-breaking rule is required.

• Both papers: a single lottery for all schools (intuitively less
“fair”) results in higher social welfare than a different
lottery for each school.

• A concrete supporting argument from our result: if goods
have no preferences, then

many lotteries = all buyer-rational matchings are possible∗;
single lottery = random serial (buyer) dictatorship

⇒ Pareto-efficient outcome.
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Full Result for Balanced Markets

Theorem (Manipulation with Minimal Blacklists)

Define n, |W |= |M|. Let PM be a profile of preference lists
for M. For every M-rational perfect matching µ, there exists a
profile PW of preference lists for W , s.t. all the following hold.

1 The unique stable matching, given PW and PM , is µ.

2 The blacklists in PW are pairwise disjoint, i.e. no man
appears in more than one blacklist.

3 nb, the number of women who have nonempty blacklists in
PW , is at most n

2 .

4 The combined size of all blacklists in PW is at most n−nb,
i.e. at most the number of women who have empty
blacklists.

Furthermore, PW can be computed in worst-case O(n3) time,
best-case O(n2) time and average-case (assuming µ is
uniformly distributed given PM) O(n2 log n) time.

Yannai A. Gonczarowski (HUJI&MSR) Manipulation of Stable Matchings using Minimal Blacklists July 29, 2014 10 / 18



Background

A Poll

Results
Overview

A Peek Into
the Depths

Summary

Full Result for Balanced Markets

Theorem (Manipulation with Minimal Blacklists)

Define n, |W |= |M|. Let PM be a profile of preference lists
for M. For every M-rational perfect matching µ, there exists a
profile PW of preference lists for W , s.t. all the following hold.

1 The unique stable matching, given PW and PM , is µ.

2 The blacklists in PW are pairwise disjoint, i.e. no man
appears in more than one blacklist.

3 nb, the number of women who have nonempty blacklists in
PW , is at most n

2 .

4 The combined size of all blacklists in PW is at most n−nb,
i.e. at most the number of women who have empty
blacklists.

Furthermore, PW can be computed in worst-case O(n3) time,
best-case O(n2) time and average-case (assuming µ is
uniformly distributed given PM) O(n2 log n) time.

Yannai A. Gonczarowski (HUJI&MSR) Manipulation of Stable Matchings using Minimal Blacklists July 29, 2014 10 / 18



Background

A Poll

Results
Overview

A Peek Into
the Depths

Summary

Full Result for Balanced Markets

Theorem (Manipulation with Minimal Blacklists)

Define n, |W |= |M|. Let PM be a profile of preference lists
for M. For every M-rational perfect matching µ, there exists a
profile PW of preference lists for W , s.t. all the following hold.

1 The unique stable matching, given PW and PM , is µ.

2 The blacklists in PW are pairwise disjoint, i.e. no man
appears in more than one blacklist.

3 nb, the number of women who have nonempty blacklists in
PW , is at most n

2 .

4 The combined size of all blacklists in PW is at most n−nb,
i.e. at most the number of women who have empty
blacklists.

Furthermore, PW can be computed in worst-case O(n3) time,
best-case O(n2) time and average-case (assuming µ is
uniformly distributed given PM) O(n2 log n) time.

Yannai A. Gonczarowski (HUJI&MSR) Manipulation of Stable Matchings using Minimal Blacklists July 29, 2014 10 / 18



Background

A Poll

Results
Overview

A Peek Into
the Depths

Summary

Full Result for Balanced Markets

Theorem (Manipulation with Minimal Blacklists)

Define n, |W |= |M|. Let PM be a profile of preference lists
for M. For every M-rational perfect matching µ, there exists a
profile PW of preference lists for W , s.t. all the following hold.

1 The unique stable matching, given PW and PM , is µ.

2 The blacklists in PW are pairwise disjoint, i.e. no man
appears in more than one blacklist.

3 nb, the number of women who have nonempty blacklists in
PW , is at most n

2 .

4 The combined size of all blacklists in PW is at most n−nb,
i.e. at most the number of women who have empty
blacklists.

Furthermore, PW can be computed in worst-case O(n3) time,
best-case O(n2) time and average-case (assuming µ is
uniformly distributed given PM) O(n2 log n) time.

Yannai A. Gonczarowski (HUJI&MSR) Manipulation of Stable Matchings using Minimal Blacklists July 29, 2014 10 / 18



Background

A Poll

Results
Overview

A Peek Into
the Depths

Summary

Full Result for Balanced Markets

Theorem (Manipulation with Minimal Blacklists)

Define n, |W |= |M|. Let PM be a profile of preference lists
for M. For every M-rational perfect matching µ, there exists a
profile PW of preference lists for W , s.t. all the following hold.

1 The unique stable matching, given PW and PM , is µ.

2 The blacklists in PW are pairwise disjoint, i.e. no man
appears in more than one blacklist.

3 nb, the number of women who have nonempty blacklists in
PW , is at most n

2 .

4 The combined size of all blacklists in PW is at most n−nb,
i.e. at most the number of women who have empty
blacklists.

Furthermore, PW can be computed in worst-case O(n3) time,
best-case O(n2) time and average-case (assuming µ is
uniformly distributed given PM) O(n2 log n) time.

Yannai A. Gonczarowski (HUJI&MSR) Manipulation of Stable Matchings using Minimal Blacklists July 29, 2014 10 / 18



Background

A Poll

Results
Overview

A Peek Into
the Depths

Summary

Full Result for Balanced Markets

Theorem (Manipulation with Minimal Blacklists)

Define n, |W |= |M|. Let PM be a profile of preference lists
for M. For every M-rational perfect matching µ, there exists a
profile PW of preference lists for W , s.t. all the following hold.

1 The unique stable matching, given PW and PM , is µ.

2 The blacklists in PW are pairwise disjoint, i.e. no man
appears in more than one blacklist.

3 nb, the number of women who have nonempty blacklists in
PW , is at most n

2 .

4 The combined size of all blacklists in PW is at most n−nb,
i.e. at most the number of women who have empty
blacklists.

Furthermore, PW can be computed in worst-case O(n3) time,
best-case O(n2) time and average-case (assuming µ is
uniformly distributed given PM) O(n2 log n) time.

Yannai A. Gonczarowski (HUJI&MSR) Manipulation of Stable Matchings using Minimal Blacklists July 29, 2014 10 / 18



Background

A Poll

Results
Overview

A Peek Into
the Depths

Summary

Full Result for Balanced Markets

Theorem (Manipulation with Minimal Blacklists)

Define n, |W |= |M|. Let PM be a profile of preference lists
for M. For every M-rational perfect matching µ, there exists a
profile PW of preference lists for W , s.t. all the following hold.

1 The unique stable matching, given PW and PM , is µ.

2 The blacklists in PW are pairwise disjoint, i.e. no man
appears in more than one blacklist.

3 nb, the number of women who have nonempty blacklists in
PW , is at most n

2 .

4 The combined size of all blacklists in PW is at most n−nb,
i.e. at most the number of women who have empty
blacklists.

Furthermore, PW can be computed in worst-case O(n3) time,
best-case O(n2) time and average-case (assuming µ is
uniformly distributed given PM) O(n2 log n) time.

Yannai A. Gonczarowski (HUJI&MSR) Manipulation of Stable Matchings using Minimal Blacklists July 29, 2014 10 / 18



Background

A Poll

Results
Overview

A Peek Into
the Depths

Summary

Tradeoff: #Blacklists vs. Combined Blacklist Size

3 nb, the number of women who have nonempty blacklists in
PW , is at most n

2 .

4 The combined size of all blacklists in PW is at most n−nb.

Examples of blacklist sizes for n = 8:

7 0 0 0 0 0 0 0 (nb = 1)
1 1 1 1 0 0 0 0 (nb = 4)
4 2 0 0 0 0 0 0 (nb = 2)
4 1 0 0 0 0 0 0 (nb = 2)
3 1 1 0 0 0 0 0 (nb = 3)
...

Tightness

Each of these is the optimal solution for some PM and µ.
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The Gale-Shapley Deferred-Acceptance Algorithm

A version modelled after Dubins and Freedman’s (1981)

The following algorithm yields the M-optimal stable matching.

1 Setup: Every man serenades under the window of the
woman he prefers most.

2 A man is scheduled for rejection if he is blacklisted by the
woman to whom he serenades, or if she prefers another
man currently serenading under her window.

3 On each night, choose an arbitrary man scheduled for
rejection. He moves to serenade under the window of the
woman next on his preference list, if such woman exists.

4 When no men are scheduled for rejection, the algorithm
terminates. Each woman is matched with the man
serenading under her window; everyone else is unmatched.

The (unique) M-optimal matching is always reached, regardless
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Construction Overview for an Easier Special Case
• Assume that the top choices of men are distinct, i.e. each

man serenades under a unique window on the first night.

• We build a profile of preference lists for the women s.t.
each woman prefers µ(w) most. ⇒ µ is W -optimal.

• Choose a woman w̃ not serenaded-to by µ(w̃), and have
her blacklist her suitor m.

• Let m be repeatedly rejected until serenading to µ(m),
who then rejects her suitor m′.

• Let m′ be repeatedly rejected until serenading to µ(m′),
who then rejects her suitor . . .

• Let µ(w̃) be repeatedly rejected until serenading to w̃ .
• Only w̃ blacklists anyone. More men have reached their

intended partner than have been blacklisted.
• Näıve next step: choose some w̃ ′ and trigger another

rejection cycle.
• Problem: all candidates for the role of w̃ ′ may have

already rejected many men, whom we’d have to blacklist.
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Construction Overview for an Easier Case (2)
• Problem: all candidates for the role of w̃ ′ may have

already rejected many men, whom we’d have to blacklist.

• Solution: show that it is possible to carefully “merge” the
cycles, i.e. alter the preferences, “without blacklisting
excessively-many men”, s.t. the “chain reaction” triggered
by w̃ causes all rejections from both rejection cycles.

• Iteratively merge more and more cycles.
• When no more merging is possibly, every woman w not

serenaded-to by µ(w) has not rejected anyone yet.
• Such merging can be done without resimulating in every

stage.
• Surprising: decisions can be implemented online

(“unintuitive algorithm”), if women control the
scheduling. Overall time complexity: Θ(n2) (optimal).

• General case harder to analyse and slower to compute (and
not online). “Conclusion”: the men inadvertently help the
women in a sense by trying to force some matching.

Yannai A. Gonczarowski (HUJI&MSR) Manipulation of Stable Matchings using Minimal Blacklists July 29, 2014 15 / 18



Background

A Poll

Results
Overview

A Peek Into
the Depths

Summary

Construction Overview for an Easier Case (2)
• Problem: all candidates for the role of w̃ ′ may have

already rejected many men, whom we’d have to blacklist.
• Solution: show that it is possible to carefully “merge” the

cycles, i.e. alter the preferences, “without blacklisting
excessively-many men”, s.t. the “chain reaction” triggered
by w̃ causes all rejections from both rejection cycles.

• Iteratively merge more and more cycles.
• When no more merging is possibly, every woman w not

serenaded-to by µ(w) has not rejected anyone yet.
• Such merging can be done without resimulating in every

stage.
• Surprising: decisions can be implemented online

(“unintuitive algorithm”), if women control the
scheduling. Overall time complexity: Θ(n2) (optimal).

• General case harder to analyse and slower to compute (and
not online). “Conclusion”: the men inadvertently help the
women in a sense by trying to force some matching.

Yannai A. Gonczarowski (HUJI&MSR) Manipulation of Stable Matchings using Minimal Blacklists July 29, 2014 15 / 18



Background

A Poll

Results
Overview

A Peek Into
the Depths

Summary

Construction Overview for an Easier Case (2)
• Problem: all candidates for the role of w̃ ′ may have

already rejected many men, whom we’d have to blacklist.
• Solution: show that it is possible to carefully “merge” the

cycles, i.e. alter the preferences, “without blacklisting
excessively-many men”, s.t. the “chain reaction” triggered
by w̃ causes all rejections from both rejection cycles.

• Iteratively merge more and more cycles.

• When no more merging is possibly, every woman w not
serenaded-to by µ(w) has not rejected anyone yet.

• Such merging can be done without resimulating in every
stage.

• Surprising: decisions can be implemented online
(“unintuitive algorithm”), if women control the
scheduling. Overall time complexity: Θ(n2) (optimal).

• General case harder to analyse and slower to compute (and
not online). “Conclusion”: the men inadvertently help the
women in a sense by trying to force some matching.

Yannai A. Gonczarowski (HUJI&MSR) Manipulation of Stable Matchings using Minimal Blacklists July 29, 2014 15 / 18



Background

A Poll

Results
Overview

A Peek Into
the Depths

Summary

Construction Overview for an Easier Case (2)
• Problem: all candidates for the role of w̃ ′ may have

already rejected many men, whom we’d have to blacklist.
• Solution: show that it is possible to carefully “merge” the

cycles, i.e. alter the preferences, “without blacklisting
excessively-many men”, s.t. the “chain reaction” triggered
by w̃ causes all rejections from both rejection cycles.

• Iteratively merge more and more cycles.
• When no more merging is possibly, every woman w not

serenaded-to by µ(w) has not rejected anyone yet.

• Such merging can be done without resimulating in every
stage.

• Surprising: decisions can be implemented online
(“unintuitive algorithm”), if women control the
scheduling. Overall time complexity: Θ(n2) (optimal).

• General case harder to analyse and slower to compute (and
not online). “Conclusion”: the men inadvertently help the
women in a sense by trying to force some matching.

Yannai A. Gonczarowski (HUJI&MSR) Manipulation of Stable Matchings using Minimal Blacklists July 29, 2014 15 / 18



Background

A Poll

Results
Overview

A Peek Into
the Depths

Summary

Construction Overview for an Easier Case (2)
• Problem: all candidates for the role of w̃ ′ may have

already rejected many men, whom we’d have to blacklist.
• Solution: show that it is possible to carefully “merge” the

cycles, i.e. alter the preferences, “without blacklisting
excessively-many men”, s.t. the “chain reaction” triggered
by w̃ causes all rejections from both rejection cycles.

• Iteratively merge more and more cycles.
• When no more merging is possibly, every woman w not

serenaded-to by µ(w) has not rejected anyone yet.
• Such merging can be done without resimulating in every

stage.

• Surprising: decisions can be implemented online
(“unintuitive algorithm”), if women control the
scheduling. Overall time complexity: Θ(n2) (optimal).

• General case harder to analyse and slower to compute (and
not online). “Conclusion”: the men inadvertently help the
women in a sense by trying to force some matching.

Yannai A. Gonczarowski (HUJI&MSR) Manipulation of Stable Matchings using Minimal Blacklists July 29, 2014 15 / 18



Background

A Poll

Results
Overview

A Peek Into
the Depths

Summary

Construction Overview for an Easier Case (2)
• Problem: all candidates for the role of w̃ ′ may have

already rejected many men, whom we’d have to blacklist.
• Solution: show that it is possible to carefully “merge” the

cycles, i.e. alter the preferences, “without blacklisting
excessively-many men”, s.t. the “chain reaction” triggered
by w̃ causes all rejections from both rejection cycles.

• Iteratively merge more and more cycles.
• When no more merging is possibly, every woman w not

serenaded-to by µ(w) has not rejected anyone yet.
• Such merging can be done without resimulating in every

stage.
• Surprising: decisions can be implemented online

(“unintuitive algorithm”), if women control the
scheduling. Overall time complexity: Θ(n2) (optimal).

• General case harder to analyse and slower to compute (and
not online). “Conclusion”: the men inadvertently help the
women in a sense by trying to force some matching.
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Construction Overview for an Easier Case (2)
• Problem: all candidates for the role of w̃ ′ may have

already rejected many men, whom we’d have to blacklist.
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Construction Overview: General Case

• No assumption regarding distinctness of top choices.

• If we let the algorithm run with arbitrary preferences (s.t.
each woman w prefers µ(w) most) until it converges, then
by the time it stops, all “candidates for the role of w̃” may
have already rejected many men.

• Solution: show that there exists a candidate whose
rejection cycle can be merged into the above run.

• More involved analysis. Requires resimulations to
compute. No (known) online method.

• Overall time complexity: O(n3). Avg. case O(n2 log n)
(due to properties of random permutations).

• Extends to unbalanced markets / partial matchings.

• When unmatched men exist, we’re back to Θ(n2).∗

General idea: follow the näıve construction; use these men
as “placeholders” to initiate cycles without blacklisting.
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General idea: follow the näıve construction; use these men
as “placeholders” to initiate cycles without blacklisting.

Yannai A. Gonczarowski (HUJI&MSR) Manipulation of Stable Matchings using Minimal Blacklists July 29, 2014 16 / 18



Background

A Poll

Results
Overview

A Peek Into
the Depths

Summary

Construction Overview: General Case

• No assumption regarding distinctness of top choices.

• If we let the algorithm run with arbitrary preferences (s.t.
each woman w prefers µ(w) most) until it converges, then
by the time it stops, all “candidates for the role of w̃” may
have already rejected many men.

• Solution: show that there exists a candidate whose
rejection cycle can be merged into the above run.

• More involved analysis. Requires resimulations to
compute. No (known) online method.

• Overall time complexity: O(n3). Avg. case O(n2 log n)
(due to properties of random permutations).

• Extends to unbalanced markets / partial matchings.

• When unmatched men exist, we’re back to Θ(n2).∗
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General idea: follow the näıve construction; use these men
as “placeholders” to initiate cycles without blacklisting.

Yannai A. Gonczarowski (HUJI&MSR) Manipulation of Stable Matchings using Minimal Blacklists July 29, 2014 16 / 18



Background

A Poll

Results
Overview

A Peek Into
the Depths

Summary

Construction Overview: General Case

• No assumption regarding distinctness of top choices.

• If we let the algorithm run with arbitrary preferences (s.t.
each woman w prefers µ(w) most) until it converges, then
by the time it stops, all “candidates for the role of w̃” may
have already rejected many men.

• Solution: show that there exists a candidate whose
rejection cycle can be merged into the above run.

• More involved analysis. Requires resimulations to
compute. No (known) online method.

• Overall time complexity: O(n3). Avg. case O(n2 log n)
(due to properties of random permutations).

• Extends to unbalanced markets / partial matchings.

• When unmatched men exist, we’re back to Θ(n2).∗
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Summary

• Answered Gusfield and Irving’s 1989 open question,
fully characterizing possible optimal blacklist sizes.

• In balanced markets, what can we deduce regarding the
M-optimal stable matching given only the men’s
preferences?

Not much, really.

• Phase change revisited: the preferences of the smaller side
have significantly more impact on the stable matchings.

• Intuition can be misleading; interesting and surprising
results regarding marriage markets still exist.

• See the full paper (on arXiv) for the full results.
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Questions?

Thank you!
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