
Brief Announcement: Pareto Optimal Solutions to
Consensus and Set Consensus

Armando Castañeda
∗

Department of Computer
Science, Technion

armando@cs.technion.ac.il

Yannai A. Gonczarowski
†

Center for the Study of
Rationality and Institute of

Mathematics, Hebrew
University of Jerusalem

yannai@gonch.name

Yoram Moses
‡

Department of Electrical
Engineering, Technion

moses@ee.technion.ac.il

ABSTRACT
A protocol P is Pareto-optimal if no protocolQ can decide as

fast as P for all adversaries, while allowing at least one pro-

cess to decide strictly earlier, in at least one instance. Pareto

optimal protocols cannot be improved upon. We present the

first Pareto-optimal solutions to consensus and k-set consen-

sus for synchronous message-passing with crashes failures.

Our k-set consensus protocol strictly dominates all known

solutions, and our results expose errors in [1, 7, 8, 12]. Our

proofs of Pareto optimality are completely constructive, and

are devoid of any topological arguments or reductions.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed

Systems-Distributed applications; D.4.5 [Operating Sys-

tems]: Reliability-Fault-tolerance; D.4.7 [Operating Sys-

tems]: Organization and Design-Distributed systems

Keywords
Consensus, k-set consensus, optimality, knowledge.

1. INTRODUCTION
The very first consensus protocols were worst-case opti-

mal [13] (decisions are always taken no later than the known

∗
Supported in part at the Technion by an Aly Kaufman Fellowship.

†
Supported in part by an ISF grant, by the Google Inter-university

center for Electronic Markets and Auctions, and by the European Re-

search Council under the European Community’s Seventh Framework

Programme (FP7/2007-2013) / ERC grant agreement no. [249159].

‡
The Israel Polak academic chair at Technion; this work was sup-

ported in part by the ISF grant 1520/11.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
PODC’13, July 22–24, 2013, Montréal, Québec, Canada.
ACM 978-1-4503-2065-8/13/07.

worst-case lower bound), deciding in exactly t + 1 rounds in

all runs [4, 17], where t is an upper bound on the num-

ber of failing processes. It was soon realised that these can

be strictly improved upon by early stopping protocols [3],

which are also worst-case optimal, but can often decide much

faster than the original ones. Following [11], this paper stud-

ies protocols that cannot be strictly improved upon, and are

thus optimal in a much stronger sense.

An adversary is a tuple α = (~v,F), where ~v is a vector

of input values from a domain V and F is a failure pattern.

A context is a set of adversaries. W.l.o.g., we consider only

full-information protocols (fip’s). For a protocol P and an

adversary α = (~v,F), we use P [α] to denote the run of P

with inputs ~v and failure pattern F. We say that a protocol

Q dominates a protocol P in context γ, denoted by Q� γP

if, for every adversary α ∈ γ and every process i, if i decides

in P [α] at time mi, then i decides in Q[α] at some time

m′i ≤ mi. Q strictly dominates P if Q� γP and P 6� γQ.

Here we consider the synchronous message-passing model

with n processes and t < n crash failures.

The early-stopping consensus protocols of [3] strictly dom-

inate the protocols of [17], which always decided at time

t + 1. Nevertheless, these early stopping protocols may not

be optimal solutions to consensus. A protocol P is an all-

case optimal solution to a decision task T if P solves T

and it dominates every protocol P ′ that solves T [13]. All-

case optimal solutions to the simultaneous variant of con-

sensus, in which all decisions are required to occur at the

same time were presented in [5]. For the standard eventual

variant of consensus, in which decisions are not required to

occur simultaneously, no all-case optimal solution exists [15].

Consequently, Halpern, Moses and Waarts [12] initiated the

study of a notion of optimality that is achievable by eventual

consensus protocols:

Definition 1. A protocol P is a Pareto-optimal solu-

tion to a decision task T in a context γ if P solves T in γ

and no protocol Q solving T in γ strictly dominates P .

In other words, for all protocols Q that solve T , if there ex-

ist an adversary α and process i s.t. i decides in Q[α] strictly

113

earlier than in P [α], there must exist some adversary β and

process j s.t. j decides in P [β] strictly earlier than in Q[β].

Halpern, Moses and Waarts logically characterised Pareto

optimality, and presented a simple and efficient consensus

protocol P0opt that they claimed was Pareto optimal.

We present Pareto-optimal protocols for consensus and k-

set consensus. A new knowledge-based analysis [6,10] allows

a simpler and more intuitive approach to Pareto optimality

than that used in [12]. Our contributions are:

1. A Pareto-optimal consensus protocol, which strictly

dominates the P0opt protocol from [12], proving that

P0opt is, in fact, not Pareto optimal.

2. A Pareto-optimal protocol for k-set consensus, which

strictly dominates all published solutions for k-set con-

sensus in the synchronous model [2, 7–9,16].

3. For a run with f failures, our protocols decide in at

most f + 1 and
⌊
f
k

⌋
+ 1 rounds, respectively, contra-

dicting lower bound proofs in [1,8] and possibly [7], and

answering an open problem from [8]. This emphasises

the subtlety of topology-based lower bounds [8] and

of reduction-based ones [1, 7]. Notably, our proofs of

Pareto optimality are completely constructive, devoid

of any topological arguments or reductions.

2. PARETO-OPTIMAL CONSENSUS AND
SET CONSENSUS

A node is a pair 〈i,m〉 referring to i’s state at time m.

〈j, `〉 is seen by 〈i,m〉 (in a given run r) if there exists a

message chain from j at time ` to i at time m. 〈j, `〉 is

hidden from 〈i,m〉 (in r) if (a) i does not know that j has

failed before time `, and (b) 〈j, `〉 is not seen by 〈i,m〉. A

hidden path w.r.t. 〈i,m〉 in run r is a sequence of processes

j0, . . . , jm−1, jm s.t. 〈j`, `〉 is hidden from 〈i,m〉, for all `.

Our construction of Pareto optimal protocols is assisted

and guided by a knowledge-based analysis, in the spirit of

[6, 10]. We consider the truth of facts at points (r,m)—

time m in run r, with respect to a set of runs R (which

we call a system). The systems we are interested in have

the form RP = R(P, γ) where P is a protocol and γ is

the t-resilient synchronous message-passing model with in-

puts in V = {0, 1}. We write (R, r,m) |= A to state that

fact A holds, or is satisfied, at (r,m) in the system R. We

write KiA to denote that process i knows A, and define:

(R, r,m) |= KiA iff (R, r′,m) |= A for all r′ ∈ R s.t. i has

the same local state at (r,m) and (r′,m).

A Pareto-optimal consensus protocol.
The definition of consensus implies that ∃v (the fact“some

process started with v”) is a precondition for deciding v.

Thus, the Knowledge of Preconditions Theorem [14] implies:

Lemma 1. Ki∃v is a precondition for i deciding on v, for

every value v in any consensus protocol.

While Ki∃v is a necessary condition for deciding v, if Ki∃0
is used as a sufficient condition for decide0 then Ki∃1 cannot

be sufficient for decide1, since this may prevent agreement:

Everyone would decide on their own value at time 0. The

following is a consensus protocol in which decisions on 0 are

performed as soon as possible:

Protocol P0 (for an undecided process i at time m):

if Ki∃0 then decide0
if m = t + 1 and ¬Ki∃0 then decide1

The following lemma provides a key step to designing a

Pareto-optimal consensus protocol that dominates P0:

Lemma 2. If Q�P0 solves consensus, then every active

process i decides 0 in Q when Ki∃0 first holds.

In consensus, a precondition for deciding 1 in run r is

that no correct process ever decides 0. By Lemma 2, in any

consensus protocol that dominates P0 processes decide 0 as

soon as they know ∃0. It follows that a precondition for

deciding 1 in such a protocol is that no correct process will

ever know ∃0 (denoted by never-known(∃0)). Indeed, by the

Knowledge of Preconditions Theorem [14], a process decid-

ing 1 must know this fact. This is equivalent to knowing

that no active process currently knows ∃0.

Lemma 3. The following are equivalent at time m:

(i) Ki(never-known(∃0)), and

(ii) ¬Ki∃0 & there is no hidden path w.r.t. 〈i,m〉.

I.e., as long as there is a hidden path w.r.t. 〈i,m〉, process i

considers it possible that some process currently knows ∃0.

Once such a path is excluded, the process can safely decide 1.

This leads to a Pareto-optimal (fip) protocol in which deci-

sions on 0 occur as soon as possible, and on 1 as soon as a

process knows that 0 will never be decided on:

Protocol Opt0 (for an undecided process i at time m):

if Ki∃0 then decide0
elseif no hidden path w.r.t. 〈i,m〉 exists then decide1

Theorem 1. Opt0 is a Pareto optimal consensus proto-

col; in every execution, all processes decide in Opt0 by time

f + 1 at the latest, where f is the number of processes that

actually fail in the execution.

Both Opt0 and the protocol P0opt from [12] decide 0 when

∃0 is known, but they differ in the rule for deciding 1. In

P0opt a process decides 1 following a round in which it has

not discovered a new failure. This condition implies the

nonexistence of a hidden path, but is strictly weaker than

it. E.g., in a run in which all initial nodes are seen at 〈i, 2〉
but process i has seen one failure in each of the first two

rounds, i decides in Opt0 but does not decide in P0opt.

Corollary 1. Protocol P0opt [12] is not Pareto optimal.

A Pareto-optimal k-set consensus protocol.
Opt0 can readily be extended to cover the case in which

V = {0, . . . , d} for d > 1. The rule for 0 is unchanged, and if

no hidden path exists a process can decide on the minimal

value it has seen. Thus, a process decides v when it knows ∃v
and that correct processes will never see a smaller value. We

call this protocol Optmin.

114

For k-set consensus the input domain is V = {0, .., d},
d ≥ k, and it is required that the correct processes decide on

at most k distinct values (thus 1-set consensus is consensus).

We present a k-set consensus protocol Optmin-k that gen-

eralizes Optmin, in which every process decides on a low

value (i.e. a value in {0, . . . , k− 1}) as soon as possible, and

decides on a high (i.e. non-low) value w as soon as it knows

that no k values smaller than w will be decided on. In every

run, let V〈i,m〉 denote the set of all values v s.t. Ki∃v holds

at m. Process i is called low at time m if V〈i,m〉 contains a

low value, otherwise it is high . We call v ∈ V minimal in r

if it is a minimal value of some set V〈i,m〉 in r. Finally, the

hidden capacity HC(i,m) of 〈i,m〉 (in r) is the number c

of pairwise node-disjoint hidden paths w.r.t. 〈i,m〉.
Our Pareto-optimal k-set consensus protocol is the fip

with the following single decision rule:

Protocol Optmin-k (for an undecided process i at time m):

if 〈i,m〉 is low or HC(i,m) < k then decideminV〈i,m〉

Hidden capacity plays an analogous role to hidden paths.

We note that it is possible both to implement fip’s for crash

failures and to compute HC(i,m) efficiently. Our correctness

proof for Optmin-k is based on a generalization of Lemma 3:

Lemma 4. In the crash model, if 〈i,m〉 is a high node with

minimal value v, then Ki(fewer than k values smaller than v

will ever be minimal values) is equivalent to HC(i,m) < k.

To show that Optmin-k is Pareto optimal, one addition-

ally needs an analogue of Lemma 2. Unfortunately, while

in every protocol dominating Optmin-k every process must

decide when it becomes low, it is no longer true, due to the

relaxed k-set agreement condition, that every such process

must decide on its minimal value. Nonetheless, we show that

under certain conditions, a low process knowing exactly one

low value must decide on it. Establishing this analogue of

Lemma 2 is the main technical challenge in our proof. No-

tably, this proof is constructive, and does not employ topo-

logical arguments, reductions or simulations. Fortunately,

this analogue of Lemma 2, despite the added conditions it

requires, allows us to prove the following, showing that no

k-set consensus protocol strictly dominates Optmin-k:

Corollary 2. Let P be a k-set consensus protocol, in

which an undecided low process decides immediately. Then

no high process with hidden capacity ≥ k can decide in P .

Using Lemma 4 and Corollary 2, we can prove:

Theorem 2.
(i) Optmin-k is a Pareto optimal k-set consensus protocol.

(ii) In every execution, all processes decide in Optmin-k

by time
⌊

f
k

⌋
+ 1 at the latest, where f is the number of

processes that actually fail in the execution.

Discussion. Interestingly, all known k-set consensus pro-

tocols in the synchronous crash model [2,7,9,16] are strictly

dominated by Optmin-k. Moreover, as pointed out by an

anonymous referee, its properties contradict the published

lower bounds in [1,8] and possibly [7] (whose model is slightly

nonstandard). Although Optmin-k decides in
⌊
f
k

⌋
+1 rounds,

since f is not known in advance it would be able to stop only

in min{
⌊

t
k

⌋
+ 1,

⌊
f
k

⌋
+ 2} rounds. In the case of consensus,

this is perfectly consistent with [3], who mention in passing

that decision by time f + 1 is possible. However, [1, 7, 8]

claim to prove explicitly that no k-set consensus protocol

can always decide by time
⌊
f
k

⌋
+1 (also contradicting [3] and

Opt0 even when k = 1). In fact, [8] pose as an open ques-

tion whether decision is ever possible before time
⌊
f
k

⌋
+ 2.

Both of our Pareto-optimal protocols Opt0 and Optmin-k
contradict these stated lower bounds, and provide a nega-

tive answer to this open problem. Moreover, they are not

only optimal in a worst-case sense; they are truly unbeat-

able in the sense that no protocol can strictly improve upon

them. These are the first such protocols.
3. REFERENCES
[1] D. Alistarh, S. Gilbert, R. Guerraoui, and C. Travers. Of

choices, failures and asynchrony: The many faces of set

agreement. Algorithmica, 62(1-2):595–629, 2012.

[2] S. Chaudhuri, M. Herlihy, N. A. Lynch, and M. R. Tuttle. Tight

bounds for k-set agreement. J. ACM, 47(5):912–943, 2000.

[3] D. Dolev, R. Reischuk, and H. R. Strong. Early stopping in

Byzantine agreement. J. of the ACM, 34(7):720–741, 1990.

[4] D. Dolev and H. R. Strong. Requirements for agreement in a

distributed system. In H. J. Schneider, editor, Distributed Data

Bases, pages 115–129. North-Holland, Amsterdam, 1982.

[5] C. Dwork and Y. Moses. Knowledge and common knowledge in

a Byzantine environment: crash failures. Information and

Computation, 88(2):156–186, 1990.

[6] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning

about Knowledge. MIT Press, 2003.

[7] E. Gafni, R. Guerraoui, and B. Pochon. The complexity of early

deciding set agreement. SIAM J. Comput., 40(1):63–78, 2011.

[8] R. Guerraoui, M. Herlihy, and B. Pochon. A topological

treatment of early-deciding set-agreement. Theor. Comput.

Sci., 410(6-7):570–580, 2009.

[9] R. Guerraoui and B. Pochon. The complexity of early deciding

set agreement: How can topology help? Electr. Notes Theor.

Comput. Sci., 230:71–78, 2009.

[10] J. Y. Halpern and Y. Moses. Knowledge and common

knowledge in a distributed environment. J. of the ACM,

37(3):549–587, 1990.

[11] J. Y. Halpern, Y. Moses, and O. Waarts. A characterization of

eventual Byzantine agreement. In Proc. 9th ACM Symp. on

Principles of Distributed Computing, pages 333–346, 1990.

[12] J. Y. Halpern, Y. Moses, and O. Waarts. A characterization of

eventual byzantine agreement. SIAM J. Comput.,

31(3):838–865, 2001.

[13] M. Herlihy, Y. Moses, and M. R. Tuttle. Transforming

worst-case optimal solutions for simultaneous tasks into all-case

optimal solutions. In PODC, pages 231–238, 2011.

[14] Y. Moses. Knowledge and Distributed Coordination. Morgan

Claypool. in preparation.

[15] Y. Moses and M. R. Tuttle. Programming simultaneous actions

using common knowledge. Algorithmica, 3:121–169, 1988.

[16] P. Raipin Parvédy, M. Raynal, and C. Travers. Early-stopping

k-set agreement in synchronous systems prone to any number of

process crashes. In PaCT, pages 49–58, 2005.

[17] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in

the presence of faults. J. of the ACM, 27(2):228–234, 1980.

115

