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ABSTRACT
Coordinating activities at different sites of a multi-agent
system typically imposes epistemic constraints on the par-
ticipants. Specifying explicit bounds on the relative times
at which actions are performed induces combined tempo-
ral and epistemic constraints on when agents can perform
their actions. This paper characterises the interactive epis-
temic state that arises when actions must meet particular
temporal constraints. The new state, called timely common
knowledge, generalizes common knowledge, as well as other
variants of common knowledge. While known variants of
common knowledge are defined in terms of a fixed point of
an epistemic formula, timely common knowledge is defined
in terms of a vectorial fixed point of temporal-epistemic for-
mulae. A general class of coordination tasks with timing
constraints is defined, and timely common knowledge is used
to characterise both solvability and optimal solutions of such
tasks. Moreover, it is shown that under natural conditions,
timely common knowledge is equivalent to an infinite con-
junction of temporal-epistemic formulae, in analogy to the
popular definition of common knowledge.

Categories and Subject Descriptors
[Artificial intelligence]: Knowledge representation and
reasoning — Reasoning about belief and knowledge, Tempo-
ral reasoning, Causal reasoning and diagnostics; [Artificial
intelligence]: Distributed artificial intelligence — Cooper-
ation and coordination, multi-agent systems; [Real-time
systems]: Real-time system specification; [Distributed
computing methodologies]

General Terms
Theory, Algorithms, Verification

Keywords
Common Knowledge, Epistemic Logic, Temporal coordina-
tion, Real-time constraints

1. INTRODUCTION
The fact that knowledge is closely related to coordinated

action in distributed and multi-agent systems is well es-
tablished by now. Ensuring that actions are performed in
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linear temporal order requires the agents to obtain appro-
priate nested knowledge (knowledge about knowledge) [5],
while coordinating simultaneous actions requires attaining
common knowledge of particular facts [17]. The latter con-
nection has found uses in the analysis of distributed proto-
cols (see, e.g. [17, 11, 28]). One of the contributions of [17]
was in relating approximations of simultaneous coordina-
tion to weaker variants of common knowledge, called ep-
silon-common knowledge and eventual common knowledge.
While common knowledge is typically defined and thought
of as an infinite conjunction of nested knowledge formulae,
it may also be defined as a fixed point [3, 8]. The vari-
ants of common knowledge defined by Halpern and Moses
in [17] are most naturally obtained by appropriately modify-
ing the fixed-point definition of common knowledge. All of
the forms of coordination analyzed in [17] are symmetric in
nature, in the sense that they are invariant under renaming
of agents. For example, ε-common knowledge arises when
the agents are guaranteed to act at most ε time units apart.
In many natural situations, however, asymmetric forms of
coordination arise. Let us consider an example.

Example 1.1 (Robotic Car Wash).
In an automated robotic car-wash enterprise, there are two
washing robots L and R, (with L fitted to soap & rinse the
left sides of cars, and R fitted to soap & rinse the right sides),
and one drying robot, denoted D. At some point after a
car enters, it must be soaped & rinsed from both sides, and
then dried. The robot L is a new model, which takes only
4 minutes to perform its duty, while R is an older model,
requiring 6 minutes. The drying is applied to the whole car,
and it must commence only after washing of both sides is
complete. Moreover, drying should not begin more than 5
minutes after the first of the washing robots finishes rinsing
the car, as water stains might otherwise incur. It follows
that, in particular, no more than 5 minutes may elapse be-
tween the time at which the rinsing of the car’s left side ends
and the time at which the rinsing of its right side ends. This,
in turn, implies that L must start washing the car no later
than 7 minutes after — and no more than 3 minutes before
— R starts washing it. Finally, it is obviously desirable to
minimize the time that the car spends in the Car Wash.

The temporal constraints in the car wash example make
the design of the robots’ control (the protocol that they fol-
low) a delicate matter. With respect to a given car, each
of the robots has only one decision to make: when to start
treating the car — we shall refer to this as the robot’s ac-
tion. The times at which the robots act must satisfy the
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interactive constraints implied by the example. Clearly, the
decision to act depends on when each of the other robots
can (and will) commence treatment of this car. Before it
can act, a robot must know (i.e., be sure) that the others
will act in time, which requires, in particular, that the others
will in turn know that they can act. More concretely, in our
example, when L starts washing a car, it must know that
between 7 minutes earlier and 3 minutes later, R will have
started washing it, and that between 4 and 4 + 5 = 9 min-
utes afterward, the drying robot D will have started drying
it. Conversely yet asymmetrically, when R starts washing a
car, it must know that between 3 minutes earlier and 7 min-
utes later, L will have started washing it and that between 6
and 6 + 5 = 11 minutes afterward, D will have started dry-
ing it. We can similarly calculate D’s required knowledge
about L and R. Notice that this dependence is asymmetric
— each robot calculates different bounds between its action
and those of the two others.

The above discussion suggests that the robots in our ex-
ample must reach some form of “temporal-epistemic equilib-
rium” in order to act. More generally, analogous situations
seem to arise whenever a set of agents must coordinate their
actions in a manner satisfying possibly asymmetric timing
constraints. Our purpose in this paper is to concisely and
usefully capture this form of interdependence in coordinated
action. We shall do this by defining a new epistemic con-
dition called timely common knowledge, which is, in a pre-
cise sense, necessary and sufficient for coordination as in
the above example. Timely common knowledge generalizes
and significantly extends common knowledge and its pop-
ular variants. Mathematically, the new notion is formally
captured by way of a vectorial fixed point. Whereas com-
mon knowledge of an event ψ can be defined as the greatest
fixed point of the function x 7→ E(ψ∧x), mapping events to
events, where E is the operator denoting “everyone knows
that...”, a vectorial fixed point is the fixed point of a function
mapping tuples of events to tuples of events. To our knowl-
edge, such a technique has never before been utilized with
regard to epistemic analysis. Roughly speaking, in the case
of the car wash example, let ξ̄ = (ξl, ξr, ξd) be the greatest
fixed point of the function xl

xr
xd

 7→

 Kl( ψc ∧ ⊚≤3xr ∧ ⊚≤9xd )
Kr( ψc ∧ ⊚≤7xl ∧ ⊚≤11xd )
Kd( ψc ∧ ⊚≤−4xl ∧ ⊚≤−6xr )

 ,

where ψc is the event “the car is here”, where Ki denotes
“i knows that. . . ” and where ⊚≤εx means that “x holds at
some (past, present or future) point in time, no later than ε
minutes after the current time”. In the fixed point ξ̄, robot
L’s coordinate ξl holds iff Kl(ψc ∧⊚≤3ξr ∧⊚≤9ξd) does, and
similarly for the other coordinates. Our results imply that
the car-wash problem may be solved by having each robot i
perform its task as soon as ξi holds, and that this solution
is, in a precise sense, time-optimal. Roughly speaking, the
tuple of events ξ̄ will constitute timely common knowledge of
ψc (with respect to the timing constraints of Example 1.1).1

Notice that ξ̄ does not correspond to a single fact (or event)
that may be true or false at a single point in time. Rather,
it represents a tuple of facts, one for each agent of interest.
Each of the facts should hold at its own individual time, and

1 The definition of timely common knowledge is made in
Section 4 with respect to general timing constraints, and is,
naturally, more subtle.

the different times jointly satisfy the conditions in the fixed
point definition.

In Section 4, we relate timely common knowledge to co-
ordination. We define a class of timely coordination spec-
ifications, in which actions by various agents must satisfy
timing conditions as in the Car Wash example. Timely co-
ordination allows both symmetric and asymmetric forms of
communication, and it strictly generalizes many symmet-
ric forms of coordination previously studied in the litera-
ture. We also show, in a precise sense, that timely common
knowledge strictly generalizes standard common knowledge
and some of its variants. In Section 6, we show another close
connection between timely common knowledge and standard
common knowledge. Recall that common knowledge is of-
ten described as an infinite conjunction of nested knowledge
formulae. A temporal-epistemic variant applies in the case
of timely common knowledge. Roughly speaking, consider
the point p at which L acts in the above car wash exam-
ple. Recall that ψc denotes the fact that the car c has ar-
rived, then clearly Klψc must hold at p. It is not hard to
check that Kl ⊚

≤3Krψc should also hold at p, as should
Kl ⊚

≤3Kr ⊚
≤7Klψc. Indeed, it is possible to generate ar-

bitrarily deeply nested formulae that must hold at p. A
different set of formulae must hold when R acts, and yet
another set when D does. Thus, timely common knowledge
implies an infinite set of nested formulae at each point of
action. We show that it is in fact equivalent to a tuple of
such sets under natural assumptions.

As an example of a natural application of our analysis,
in Section 5 we present and mathematically analyze timely-
coordinated response — a novel class of multi-agent coor-
dination tasks. Roughly speaking, a timely-coordinated re-
sponse task involves a prespecified triggering event ψ, such
as the activation of a smoke detector or the arrival of a
car to the car-wash facility. Should the trigger ψ occur,
then each agent i in a set I of agents should perform an
action (called its response to ψ) specified by the task, and
the timing of the actions must satisfy a constraint of the
following form: for all i, j ∈ I, if i acts at time ti and j
at tj , then −δ(j, i) ≤ tj − ti ≤ δ(i, j). The trigger ψ, the
response actions, and the bounds δ are parameters specified
in a given task. E.g. in the car wash example, the trigger is a
car’s arrival ψc, responses are robots’ initiating their respec-
tive services, while δ(L,R) = 3, δ(L,D) = 9, δ(R,L) = 7,
δ(R,D) = 11, δ(D,L) = −4 and δ(D,R) = −6. Timely-
coordinated response is inspired by, and strictly generalizes,
the response problems presented and studied by Ben-Zvi and
Moses [5, 4, 6, 7].

We show that timely common knowledge is, in a precise
sense, the epistemic counterpart of timely coordination. We
use timely common knowledge to phrase a necessary and
sufficient condition characterising protocols solving timely-
coordinated response. Moreover, we show how timely com-
mon knowledge can be used to give a general technique for
deriving a time-optimal solution (i.e. an optimal protocol)
for any instance of timely-coordinated response.

The main contributions of this paper are:

• The theory of coordination in multi-agent systems is
extended to treat timely coordination, in which general
interdependent constraints are allowed;

• Timely common knowledge is defined as a vectorial
fixed point and the mathematical soundness and key
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properties of its definition are established;

• The solvability of, and optimal solutions to, a general
class of timely coordination tasks are characterised us-
ing timely common knowledge;

• Timely common knowledge is shown to generalize com-
mon knowledge and many of its variants; and

• Timely common knowledge is shown to be equivalent
to an infinite conjunction under natural assumptions.

2. RELATED WORK
The notion of common knowledge was defined by the philo-

sopher David Lewis in [24]. Its relevance to game theory
was shown by Aumann [2] and to AI by McCarthy [26].
Halpern and Moses [17] introduced it to distributed com-
puting, showed its connection to simultaneity, and defined
weaker variants of common knowledge corresponding to“ap-
proximations” of simultaneity. Common knowledge and its
variants have had various applications in distributed com-
puting [9, 11, 28, 19, 22, 12]. More recently, Ben-Zvi and
Moses studied how time bounds on message transmission im-
pact coordination in message-passing systems [5, 6, 4]. Most
of their work studied coordination problems that are speci-
fied by partial orders. In [7], Ben-Zvi and Moses consider a
notion of tightly-timed coordination in which agents act at
precise time differences from each other. This gives rise to
a generalization of common knowledge in which agents are
considered at different prespecified times. All fixed-point
epistemic notions (common knowledge and its variants) in
the above works are based on a standard (scalar) fixed-point
definition. The analysis in this paper significantly extends
the connection between coordination and epistemic notions.

3. MODEL AND NOTATION
For ease of exposition, we adopt the multi-agent systems

model, based on contexts, runs and systems, of Fagin et
al. [12]. The model captures the possible histories, called
runs, of a finite set of agents I. We model time as being
discrete, ranging over the set T = N ∪ {0} of nonnegative
integers.2 Each agent i ∈ I may be thought of as an au-
tomaton, existing at any specific time t ∈ T in one of a
set of possible states Li. The set of possible global states
of the model, describing a snapshot of the system at some
given time, is thus Le ××i∈I Li, where Le is a set of pos-

sible states for the environment. We denote by R the set
of possible runs, or possible histories, of the model, where a
run r ∈ R is a function r : T→ Le ××i∈I Li, from times to

global states. A point is a run-time pair p = (r, t) ∈ R× T,
denoting time t in the run r. The local state of an agent i ∈ I
at the point (r, t) is denoted by ri(t). We denote by P the set
of protocols, where a protocol P ∈ P is a tuple P = (Pi)i∈I,
in which each Pi is a function from the set Li of i’s local
states to sets of possible actions (or to a single option, if P
is deterministic) for the actions to be performed by i when
at that state. Finally, a context γ is a specification of a pro-
tocol for the environment, possible initial global states, any

2 All results in this paper hold verbatim if we consider in-
finite sets I of agents, and with only trivial changes if time
is continuous, so that T , R≥0. We avoid modifying the
model to handle continuous time for ease of exposition.

relevant constraints on runs (e.g. an agent may not perform
two certain given actions at the same time), and a transition
function from the global state and all actions performed at
any time t, to the global state at t+ 1. For a context γ and
a protocol P ∈ P, we denote by R(P, γ) the set of runs of P
in γ.

3.1 Events, Knowledge Operators and
Temporal Operators

There are two equivalent ways of defining knowledge in
systems, one in terms of propositions and modal operators
in modal logic [12], and the other, proposed by Aumann [2],
in terms of events and of functions on events. We follow
the latter, since it facilitates the formulation of fixed points,
which play a role in our analysis. Informally, however, we use
the terms fact and event interchangeably. As in probability
theory, we represent events using the set of points at which
they hold. A set of runs R gives rise to a (R-)universe

ΩR , R×T, and a corresponding σ-algebra of events FR ,
2ΩR . Thus, for example, the event “agent i is performing
action α”, is formally associated with all points (r, t) ∈ ΩR
at which i performs α.

We make use of several temporal operators applied to
events. These are very much in the spirit of standard linear-
time operators (see Manna and Pnueli [25]), except that in
our case two of the operators may refer to the past as well
as the future. We thus use slight variations on the stan-
dard symbols. A few basic properties of these operators are
explored in Appendix C. We define three temporal opera-
tors as functions FR → FR as follows;3 fix R ⊆ R and let
ψ ∈ FR.

• �ψ ,
{

(r, t) ∈ ΩR | ∃ t′ ∈ T : (r, t′) ∈ ψ
}

; the event
“ψ holds at some past, present or future time (during
the current run)”,

• ⊚εψ ,
{

(r, t) ∈ ΩR | (r, t + ε) ∈ ψ
}

, for ε ∈ Z; the
event “ψ holds at exactly ε time units from now”, and

• ⊚≤εψ ,

{
(r, t) ∈ ΩR

∣∣∣∣ ∃ t′ ∈ T :
t′ ≤ t+ ε &

(r, t′) ∈ ψ

}
, for

ε ∈ Z∪{∞}; the event“ψ holds at some (past, present,
or future) time, no later than ε time units from now”.

The standard definition of knowledge in this setting is also
a function on events. Intuitively, an agent’s information is
captured by its local state ri(t). Accordingly, two points
(r, t) and (r′, t′) are considered indistinguishable in the eyes
of i if i’s local state at both points is the same. We use Ki

to denote i’s knowledge, and define the event “i knows ψ”
by

• Kiψ ,
{

(r, t)∈ΩR | (r′, t′)∈ψ whenever r′i(t)=ri(t)
}

.

Since Kiψ is itself an event, nested knowledge facts such
as KjKiψ are immediately well defined. This gives rise to
a standard S5 notion of knowledge, equivalent to the stan-
dard definition in terms of partitions. See Appendix A for
a discussion, and for a definition of common knowledge.

3 While the following definitions depend on R, we omit R
from these notations for readability, as the set of runs will be
clear from the discussion. We follow this convention when
presenting some other definitions below as well.
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3.2 Event Ensembles
Roughly speaking, it is possible for an agent i to act pre-

cisely whenever an event ψ ∈ ΩR occurs, only if at every
point at which ψ holds, i knows that it does, i.e. if ψ = Kiψ.
Such an event is said to be i-local. Equivalently, ψ is i-local
if its truth is determined by i’s local state, i.e. if there ex-
ists S ⊆ Li s.t. for every (r, t) ∈ ΩR, we have (r, t) ∈ ψ iff
ri(t) ∈ S. In the study of coordination, we are usually inter-
ested in the interaction between the actions of several agents.
Consider, for example, a scenario in which two agents, Al-
ice and Bob, must perform two respective actions α and β
in some coordinated manner. Then the set eA of points
at which Alice performs α is a local event for Alice, and
likewise for the corresponding set eB for Bob and β. The
pair ē , (eA, eB) is called an ensemble for Alice and Bob.
More generally, following Fagin et al., given a set of agents
I ⊆ I, we define an I-ensemble to be an I-tuple of events
ē = (ei)i∈I ∈ FRI , in which ei is i-local, for each i ∈ I. Re-
turning to Alice and Bob, consider a deterministic protocol
in which whenever Alice performs action α, Bob is guar-
anteed to simultaneously perform action β and vice versa.
Since α and β are guaranteed to be simultaneous actions,
we have eA = eB . An ensemble ē with this property is thus
said to be perfectly coordinated. Fagin et al. [13] have stud-
ied the properties of such ensembles, as well as of ensembles
satisfying weaker forms of coordination (eventual coordina-
tion and ε-coordination) defined in [17]. See Appendix B.1
for more details.

4. TIMELY COORDINATION &

TIMELY COMMON KNOWLEDGE
Given a set of agents I, we denote by the set of distinct

pairs of agents in I by I 2̄ ,
{

(i, j) ∈ I2 | i 6= j
}

. We define
a timely-coordination spec to be a pair (I, δ), where I ⊆ I
is a set of agents and δ : I 2̄ → Z ∪ {∞}. Intuitively, δ(i, j)
denotes an upper bound on the time from when i performs
her action, until when j performs his.4 We can now formally
define timely coordination.

Definition 4.1 (Timely-Coordination).
Given a timely-coordination spec (I, δ) and a system R ⊆ R,
we say that an I-ensemble ē ∈ FRI is δ-coordinated (in R)

if for every (i, j) ∈ I 2̄ and for every (r, t) ∈ ei, there exists
t′ ≤ t+ δ(i, j) s.t. (r, t′) ∈ ej.

While, as discussed in Appendix A, the popular definition
of common knowledge is in terms of an infinite conjunction
of nested knowledge formulae, Barwise [3], following Har-
man [8], has defined common knowledge as a fixed point.
Indeed, if we denote EIψ =

⋂
i∈I Kiψ (“everybody in I

knows”), then the following is an equivalent way of formu-
lating common knowledge as a fixed point.5

Theorem 4.2 ([17]). Let R ⊆ R and I ⊆ I. Then CIψ
is the greatest fixed point of the function fψ : FR → FR given
by x 7→ EI(ψ ∩ x), for every event ψ ∈ FR.

4 If time were continuous (i.e. T = R≥0), then the range of δ
would be (T− T) ∪ {∞} = R ∪ {∞} = (−∞,∞].
5 The equivalence is in the standard models; see Barwise [3]
for a discussion of various accepted definitions for common
knowledge and of models in which they do not coincide.

As mentioned in the introduction, a classic result [17],
which stems from Theorem 4.2, is that common knowledge
tightly relates to perfect coordination. One manifestation
of this is in the fact that if an action α is guaranteed to be
performed simultaneously by a set of agents whenever any
of them performs it, then these agents must have common
knowledge of the occurrence of α when it is performed. (In-
tuitively, the guaranteed simultaneity of α causes its joint
occurrence to be inferred at once by all participants who
perform it.) Conversely, whenever common knowledge of a
fact arises among a set of agents, it does so simultaneously
for all agents. See Appendix B.2 for further details, as well
as a review of the analogous analysis for the weaker vari-
ants of common knowledge defined in [17]. Our purpose is
to similarly relate timely coordination to an epistemic no-
tion. Consider the points at which the robots act in the
Car Wash example. In general, the robots may act at differ-
ent times. Moreover, while the local events that the various
robots must respectively know in order for them to act are
interdependent, they differ from one another. Therefore, in-
stead of seeking a fixed point of a function on (single events
in) FR as done for common knowledge and previous vari-
ants, we define a function on FRI — the set of I-tuples of
events. Given an event ψ ∈ FR and a timely-coordination
spec (I, δ), we define a function fδψ on FRI in which each
coordinate i captures the respective constraints of the agent
i, based on ψ and δ. The greatest fixed point of fδψ, denoted

by by CδIψ (this is an I-tuple of events), is shown to cap-
ture timely coordination, and is thus the desired ensemble.
Since fδψ is a function of several variables, it is a vectorial

function, and its fixed point is a vectorial fixed point [1].6

4.1 Timely Common Knowledge as a
Vectorial Fixed Point

We start by defining a lattice structure on FRI . A greatest
fixed point of a function f on FRI is a fixed point of f that
is greater than any other fixed point thereof, according to
the partial order ≤ of the lattice. Recall that a member of
FRI is a tuple of events of the form ϕ̄ , (ϕi)i∈I .

Definition 4.3 (Lattice Structure on FRI).
Let R ⊆ R and let I ⊆ I. The following partial order relation
and binary operations define a lattice structure on FRI .

• Order: ϕ̄ ≤ ξ̄ iff ∀i ∈ I : ϕi ⊆ ξi.

• Join: ϕ̄ ∨ ξ̄ , (ϕi ∪ ξi)i∈I .

• Meet: ϕ̄ ∧ ξ̄ , (ϕi ∩ ξi)i∈I .

We are now ready to define timely common knowledge.

Definition 4.4 (Timely Common Knowledge).
Let R ⊆ R and let (I, δ) be a timely-coordination spec. For
each ψ ∈ FR, we define δ-common knowledge of ψ by I,
denoted by CδIψ, to be the greatest fixed point of the func-
tion fδψ : FRI → FRI given by

fδψ : (xi)i∈I 7→

Ki

(
ψ ∩

⋂
j∈I\{i}

⊚
≤δ(i,j)xj

)
i∈I

.

6 While vectorial fixed points may alternatively be captured
by nested fixed points [1, Chapter 1], in our case we argue
that the vectorial representation better parallels the under-
lying intuition. We are not aware of either vectorial, or
nested fixed points being used in an epistemic setting be-
fore.
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We justify Definition 4.4 in three steps. First, we show
that CδIψ is well-defined and satisfies a natural induction rule
and a monotonicity property. (For proofs of all propositions
given in this paper, see Appendix C.)

Lemma 4.5. Let (I, δ) be a timely-coordination spec, let
R ⊆ R and let ψ ∈ FR.

1. CδIψ is well-defined, i.e. fδψ has a greatest fixed point.

2. Induction Rule: Every ξ̄ ∈ FRI satisfying ξ̄ ≤ fδψ(ξ̄)

also satisfies ξ̄ ≤ CδIψ.

3. CδI is monotone: ψ ⊆ φ ⇒ CδIψ ≤ CδIφ, for every
ψ, φ ∈ FR.

The induction rule is a powerful tool for analyzing situ-
ations giving rise to timely common knowledge. It states
that if ξi implies the Ki statement in Definition 4.4, with xj
substituted by ξj everywhere, then each agent i knows its
respective coordinate of CδIψ whenever ξi holds.

A timely-coordination spec is a fairly general tool for defin-
ing relative timing constraints. Particular simple instances
can capture previously studied forms of coordination. Name-
ly, if δ ≡ ∞, timely coordination coincides with eventual
coordination, and for any ε < ∞, the form of coordination
obtained by setting δ ≡ ε closely relates to ε-coordination
(and hence to perfect coordination when δ ≡ 0). Indeed, for
coordinate-wise stable ensembles (see Appendix C.4) and
for ensembles with at most a single point per agent per run
(see Section 5 for an example), δ ≡ ε precisely captures
ε-coordination and δ ≡ 0 specifies perfect coordination. Fur-
thermore, timely common knowledge is closely related to
the corresponding variants of common knowledge, for each
of these special cases of constant δ. (See Appendix D.2 for
the precise details.) Our second step is to show that timely
common knowledge closely corresponds to timely coordina-
tion, in the same sense in which common knowledge cor-
responds to perfect coordination, and variants of common
knowledge to their respective forms of coordination. (See,
once again, Appendix B.2.) The following theorem estab-
lishes this correspondence. (While phrasing this theorem,

and henceforth, we use the shorthand notation ∪ξ̄ ,
⋃
i∈I ξi,

for every ξ̄ = (ξi)i∈I ∈ FRI .)

Theorem 4.6. Let R ⊆ R and let (I, δ) be a timely-
coordination spec.

1. CδIψ constitutes a δ-coordinated I-ensemble, for every
ψ ∈ FR.

2. ∪CδIψ ⊆ ψ, for every ψ ∈ FR.

3. If ē ∈ FRI is a δ-coordinated I-ensemble satisfying
∪ē ⊆ ψ for some ψ ∈ FR, then ē ≤ CδIψ.

4. If ē ∈ FRI is a δ-coordinated I-ensemble, then
ē ≤ CδI (∪ē).

5. If ē ∈ FRI is a δ-coordinated I-ensemble, then
∪ē = ∪CδI (∪ē).

Theorem 4.6 highlights some key properties of the fun-
damental connection between δ-coordination and δ-common
knowledge: (Parts 1, 4 and 5 are analogues of Theorems B.4,
B.5 and B.6, the latter part being stronger in a sense than its

counterparts from Theorems B.5 and B.6 regarding eventual-
and ε-common knowledge, respectively.) Parts 1–3 charac-
terise δ-common knowledge of ψ as the greatest δ-coordi-
nated event ensemble that implies ψ.7 Moreover, Part 3
provides convenient means to prove that timely common
knowledge holds. Part 4 says that regardless of the way
a δ-coordinated ensemble is formed (be it using δ-common
knowledge of some event ψ, or otherwise), the fact that
its i’th coordinate holds implies that the i’th coordinate of
δ-common knowledge of (the disjunction of) this ensemble
holds as well. Finally, part 5 captures the fact that the union
of any δ-coordinated ensemble is a fixed point of ∪CδI , and,
together with Part 1, implies the idempotence of ∪CδI . Our
third step is demonstrating the usefulness of timely common
knowledge, which we do in the next section.

5. TIMELY-COORDINATED RESPONSE
We now harness the machinery developed in the previous

sections to study a class of coordination problems. In these
problems, the occurrence of a particular event φ must trigger
responses by a set I ⊆ I of agents, and the responses must
be timely coordinated according to a given spec δ.8 The
triggering event φ may be the arrival of a car at the Car
Wash, the ringing of a smoke alarm, or some other event
that requires a response. A run r during which φ occurs
(i.e. (r, t) ∈ φ for some t ∈ T) is called φ-triggered. Follow-
ing in the spirit of [5] and generalizing their definitions (see
Appendix D.1), we define this class of coordination problems
as follows.

Definition 5.1 (Timely-Coordinated Response).
A timely-coordinated response problem, or TCR, is a
quintuplet τ = (γ, φ, I, δ, ᾱ), where γ is a context, φ ∈ FR is
an event, (I, δ) is a timely-coordination spec and ᾱ = (αi)i∈I
is a tuple of actions, one for each i ∈ I. A protocol P is said
to solve a TCR τ = (γ, φ, I, δ, ᾱ) if for every r ∈ R(P, γ),

• If r is φ-triggered and φ first occurs in r at tφ ∈ T,
then each agent i ∈ I responds (i.e. performs αi) in r

exactly once, at a time ti ≥ tφ s.t. for every (i, j) ∈ I 2̄,
it holds that tj ≤ ti + δ(i, j).

• If r is not φ-triggered, then none of the agents in I
respond in r.

We say that τ is solvable if there exists a protocol P ∈ P
that solves it. We now show that attaining timely common
knowledge is a necessary condition for action in a protocol
solving timely-coordinated response, in the sense that an
agent cannot respond unless is has attained its respective
coordinate of timely common knowledge.9 Indeed, Theo-

7 Neither eventual- nor ε-common knowledge give way for
a clean analogous characterisation. (See Appendix D.2 for
more details.)
8 For ease of exposition, we assume that each agent is associ-
ated with exactly one action. Essentially the same analysis
applies if we allow each agent to be associated with more
than one response action.
9 In the following propositions, we work in the universe
ΩR(P,γ) defined by the system of runs of the given proto-
col in question. All knowledge and temporal operators are
therefore relative to this universe. Furthermore, we slightly
abuse notation by writing φ to refer to φ ∩ΩR(P,γ), i.e. the
restriction of φ to this universe.
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rem 4.6(3) implies:10

Corollary 5.2. Let P ∈ P be a protocol solving a TCR
τ = (γ, φ, I, δ, ᾱ), and let r ∈ R(P, γ) be a φ-triggered run.
If i ∈ I responds at time ti in r, then (r, ti) ∈

(
CδI (⊚≤0φ)

)
i
.

In fact, timely common knowledge is not only necessary
for solving a TCR, but also sufficient for doing so. (See be-
low.) Indeed, we now argue that timely common knowledge
can be used to design time-optimal solutions for arbitrary
TCRs. For the notion of time-optimality to be well defined,
we define it with regard to each family of protocols that
are the same in all aspects, except for possibly the time
at which (and whether) agents respond. To this end, we
restrict ourselves to protocols that may be represented as
a pair P = (P−ᾱ, Pᾱ), s.t. the output of P is a Cartesian
product of the outputs of its two parts, where Pᾱ speci-
fies whether to respond, while P−ᾱ specifies everything else.
(Natural examples for such protocols are those in which the
choice of whether to respond is deterministic.) Furthermore,
we restrict ourselves to contexts in which none of ᾱ affect
the agents’ transitions in any way (and hence do not affect
any future states or actions). Under these conditions, given
two protocols P = (P−ᾱ, Pᾱ) and P ′ = (P−ᾱ, P

′
ᾱ) that share

same non-response component P−ᾱ, there exists a natural
isomorphism σ : R(P, γ)

∼−→ R(P ′, γ), in which correspond-
ing runs agree in all aspects except for possibly the times at
which (and whether) responses are performed; we thus say
that two such protocols are run-equivalent. Furthermore,
we slightly abuse notation by writing R(P−ᾱ, γ) to refer to
both R(P, γ) and R(P ′, γ), which coincide using σ. We say
that a protocol P = (P−ᾱ, Pᾱ) is a time-optimal solution for
a TCR τ if P solves τ and, moreover, responses are never
performed in P later than in any solution P ′ of τ that is
run-equivalent to P . More formally, we demand that for ev-
ery φ-triggered r ∈ R(P, γ) and for every i ∈ I, if i responds
at time ti in r and at time t′i in σ(r) ∈ R(P ′, γ) (with σ
as above), then necessarily ti ≤ t′i. It should be noted that
it is not a priori clear that TCRs admit time-optimal so-
lutions. We now show not only that all solvable TCRs do,
but moreover, that for every solution there exists a run-
equivalent time-optimal solution and that all time-optimal
solutions have each agent responding at the first instant at
which it attains its respective coordinate of timely common
knowledge.11

Corollary 5.3. Let τ = (γ, φ, I, δ, ᾱ) be a solvable TCR
and let P = (P−ᾱ, Pᾱ) be a protocol solving it. The run-
equivalent protocol P ′ = (P−ᾱ, P

′
ᾱ) in which every i ∈ I

responds at the first instant at which
(
CδI (⊚≤0φ)

)
i

holds (in
ΩR(P−ᾱ,γ)), is a time-optimal solution for τ .

Indeed, we may now formalize our previous statement re-
garding timely common knowledge being necessary and suf-
ficient for solving a TCR τ = (γ, φ, I, δ, ᾱ): a protocol P is

10 Observe that ⊚≤0 stands for the temporal operator “pre-
viously”.

11 As noted in Appendix C, in some runs of certain systems
R(P−ᾱ, γ) in a continuous-time model, the set of times at

which
(
CδI (⊚≤0φ)

)
i

holds does not attain its infimum value.
It is possible to similarly show that in such pathological
cases, no time-optimal protocol that is run-equivalent to P
exists.

run-equivalent to a solution of τ iff CδI (⊚≤0φ) is attained in
each of its φ-triggered runs. (See Corollary C.13.)

Attaining true (not timely) common knowledge of a fact
of interest is often an effective and intuitive way of synchro-
nization, which may also be used to solve TCRs. However,
in addition to such a solution being suboptimal in many
cases, timely common knowledge is often attainable even
when common knowledge is not. In the Car Wash setting,
for example, if the arrival of a car is guaranteed to be ob-
served by each robot (privately) within at most 2 time units,
then the TCR can be readily solved (and timely common
knowledge attained) even though techniques of [17] may be
used to show that the arrival of the car might never become
common knowledge.

We conclude this section by noting that in contexts sup-
porting full-information protocols (see, e.g. [12]), the above
tools may be applied to obtain both a globally time-optimal
solution to, as well as a solvability criterion for, arbitrary
TCRs. We defer the details to the full paper.

6. A CONSTRUCTIVE DEFINITION FOR
TIMELY COMMON KNOWLEDGE

The analysis of Section 5 provides us with time-optimal
solutions for timely-coordinated response. The fly in the
ointment, though, is how to implement these solutions, i.e.
how to check whether a certain coordinate of timely common
knowledge holds, given the state of the corresponding agent.
We now take a step in this direction, which also sheds some
more light on the fixed-point analysis of the previous section,
and makes the notion of timely common knowledge more
concrete. Under natural assumptions (see Theorem C.20 for
details), we obtain, for every i ∈ I:

(CδIψ)i =
⋂

(i,i2,...,in)∈I∗̄
Ki⊚

δ(i,i2)Ki2⊚
δ(i2,i3)Ki3 · · ·⊚

δ(in−1,in)Kinψ,

(1)

where I ∗̄ ,
{

(i1, . . . , in) ∈ I∗ | ∀m : im 6= im+1

}
denotes

the set of all finite non-stuttering sequences of elements of I.
Note that for δ ≡ 0 (perfect coordination), (1) yields in
each coordinate a familiar definition (see Observation A.4) of
common knowledge as an infinite conjunction: (cf. the more
popular Definition A.3, which is generalized by eventual-
and ε-common knowledge, but is symmetric in nature, and
therefore less natural for generalization in our setting.)

CIψ =
⋂

(i1,...,in)∈I∗̄
Ki1Ki2Ki3 · · ·Kinψ.

The formulation of timely common knowledge in terms of
an infinite conjunction provides a constructive interpretation
of the time-optimal solution from Corollary 5.3. Roughly
speaking, each agent i ∈ I should respond at the first in-
stant at which all nested-knowledge formulae of the form
Ki ⊚

δ(i,i2) Ki2 ⊚
δ(i2,i3) Ki3 · · ·⊚δ(in−1,in) Kin ⊚

≤0 φ hold for
all (i, i2, . . . , in) ∈ I ∗̄. (See Corollary C.22 for the precise
phrasing.) While this may appear to take us a step closer
to implementing time-optimal solutions, a näıve implemen-
tation may still require potentially infinitely many tests. In
fact, as in the case of common knowledge, in practice timely
common knowledge may be established using the induction
rule of Theorem 4.6(3). We also refer the reader to [16,
Chapters 6 and 9] for a study of the causal structure of
these tests, which uses a different set of tools and which is,
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therefore, out of the scope of this paper.

7. CONCLUDING REMARKS
This paper suggests a broader connection between epis-

temic analysis and distributed coordination than was previ-
ously realized. The novel concept of timely common knowl-
edge provides a formal connection between distributed pro-
tocols and a new form of equilibria, thus bringing distributed
and multi-agent protocols closer to the realm of games, even
in the absence of utilities and preferences. It should be
noted, however, that the equilibrium in our analysis is not
merely among strategies; in the Car Wash scenario, for ex-
ample, the particular time instants at which the various
robots act are at a temporal-epistemic equilibrium.

While this paper introduces vectorial fixed-point epistemic
analysis as a tool for defining timely common knowledge,
we believe that it will prove to be applicable well beyond
the scope of problems considered here. We are currently
pursuing generalizations and variations on the techniques
presented in this paper for varying purposes, from general-
izations of timely common knowledge to analyses of signif-
icantly different tasks, such as distributed agreement prob-
lems, which do not involve any form of timely coordination.

Fixed points, be they scalar or vectorial, be they temporal-
epistemic or of any other kind, provide formal, yet intuitive,
means of capturing equilibria in multi-agent systems. Many
systems around us, from subatomic physical systems to as-
trophysical ones, and from animal societies to stock markets,
exist in some form of equilibrium, possibly reached as a re-
sult of a long-forgotten spontaneous symmetry breaking. It
is thus only natural to conjecture that fixed-point analyses
of distributed algorithms and multi-agent systems hold the
potential to provide significant further insights that are yet
to be discovered.
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APPENDIX
A. KNOWLEDGE AND

COMMON KNOWLEDGE
We first survey a few immediate (and well-known) proper-

ties of the knowledge operator, which is defined in Section 3.

Observation A.1. Let R ⊆ R and let i ∈ I. By defini-
tion of Ki, we have:

• Knowledge Axiom: Kiψ ⊆ ψ, for every ψ ∈ FR.

• Positive Introspection Axiom: KiKiψ = Kiψ, for every
ψ ∈ FR.

• Monotonicity: ψ ⊆ φ ⇒ Kiψ ⊆ Kiφ, for every
ψ, φ ∈ FR.

• Ki commutes with intersection:
Ki(∩Ψ) =

⋂
{Kiψ | ψ ∈ Ψ}, for every set of events

Ψ ⊆ FR.

We now build upon the definition of knowledge and define
the notions of“everyone knows”and of“common knowledge”.

Definition A.2 (Everyone Knows). Let R ⊆ R and

let I ⊆ I. For every ψ ∈ FR, denote EIψ ,
⋂
i∈I Kiψ.

One popular, constructive definition of common knowl-
edge [14] is the following, defining that an event is common
knowledge to a set of agents when all know it, all know that
all know it, etc.

Definition A.3 (Common Knowledge). Let R ⊆ R
and let I ⊆ I. For every ψ ∈ FR, denote CIψ ,

⋂∞
n=1 EI

nψ,

where EI
0ψ , ψ and EI

nψ , EIEI
n−1ψ for every n ∈ N.

Observation A.4. Equivalently, by Definition A.2,

CIψ =
⋂

(i1,...,in)∈I∗
Ki1 · · ·Kinψ =

⋂
(i1,...,in)∈I∗̄

Ki1 · · ·Kinψ,

where I ∗̄ ,
{

(i1, . . . , in) ∈ I∗ | ∀m ∈ [n − 1] : im 6= im+1

}
denotes the set of all finite non-stuttering sequences of ele-
ments of I.

B. BACKGROUND: SYMMETRIC FORMS
OF COORDINATION

In this section, we survey a few forms of coordination pre-
viously defined and analyzed by Halpern and Moses [17], as
formulated for ensembles in [12, Section 11.6]. We reformu-
late these using events and adapt them to our notation.

B.1 Definitions
Definition B.1 (Perfect Coordination).

Let R ⊆ R and let I ⊆ I. An I-ensemble ē ∈ FRI is said
to be perfectly coordinated (in R) if ei = ej for every
i, j ∈ I.

Definition B.2 (Eventual Coordination [17, 12]).
Let R ⊆ R and let I ⊆ I. An I-ensemble ē ∈ FRI is said to
be eventually coordinated (in R) if for every i, j ∈ I and
for every (r, t) ∈ ei, there exists t′ ∈ T s.t. (r, t′) ∈ ej.

Definition B.3 (ε-Coordination [17, 12]).
Let R ⊆ R, let I ⊆ I and let ε ≥ 0. An I-ensemble ē ∈ FRI
is said to be ε-coordinated (in R) if for every i ∈ I and for
every (r, t) ∈ ei, there exists an interval T ⊆ T of length at
most ε, s.t. t ∈ T and s.t. for every j ∈ I there exists t′ ∈ T
s.t. (r, t′) ∈ ej.

B.2 Fixed-Point Analysis
While phrasing the propositions in this section, and hence-

forth, we use the shorthand notation ∪ξ̄ ,
⋃
i∈I ξi, for every

I-ensemble ξ̄ = (ξi)i∈I ∈ FRI .

Theorem B.4 ([17, 12]). Let R ⊆ R and let I ⊆ I.
1. (CIψ)i∈I constitutes a perfectly coordinated I-ensemble,

for every ψ ∈ FR.

2. If ē ∈ FRI is a perfectly-coordinated I-ensemble, then
ei ⊆ CI(∪ē) for every i ∈ I.

3. If ē ∈ FRI is a perfectly-coordinated I-ensemble, then
∪ē = CI(∪ē).

Theorem B.5 ([17, 12]). Let R ⊆ R and let I ⊆ I.
1. For every ψ ∈ FR, the function f�ψ : FR → FR given by

x 7→ ∩i∈I�Ki(ψ∩x) has a greatest fixed point, denoted
by C�I ψ — for eventual common knowledge of ψ by
I.

2. (KiC
�

I ψ)i∈I constitutes an eventually-coordinated I-en-
semble, for every ψ ∈ FR.

3. If ē ∈ FRI is an eventually-coordinated I-ensemble,
then ei ⊆ KiC

�

I (∪ē) for every i ∈ I.

4. If ē ∈ FRI is an eventually-coordinated I-ensemble,
then ∪ē ⊆ C�I (∪ē).

We note that for ε ≡ 0, ε-coordination is the same as
perfect coordination, and thus the following theorem also
implies Theorem B.4 as a special case thereof.

Theorem B.6 ([12]). Let R ⊆ R, let I ⊆ I and let
ε ≥ 0. For every ψ ∈ FR, denote

EεI (ψ) ,

(r, t) ∈ ΩR

∣∣∣∣∣∣
∃T ⊆ T :

t ∈ T & sup{T − T} ≤ ε &
∀i ∈ I ∃ t′ ∈ T : (r, t′) ∈ Kiψ

 .

1. For every ψ ∈ FR, the function fεψ : FR → FR given
by x 7→ EεI (ψ ∩ x)) has a greatest fixed point, denoted
by CεIψ — for ε-common knowledge of ψ by I.

2. (KiC
ε
Iψ)i∈I constitutes an ε-coordinated I-ensemble, for

every ψ ∈ FR.

3. If ē ∈ FRI is an ε-coordinated I-ensemble, then
ei ⊆ KiC

ε
I (∪ē) for every i ∈ I.

4. If ē ∈ FRI is an ε-coordinated I-ensemble, then
∪ē ⊆ CεI (∪ē).
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C. PROOFS

C.1 Preliminaries

Observation C.1. Let R ⊆ R and i ∈ I. By the positive
introspection axiom, the event Kiψ is i-local for every ψ ∈
FR.

Definition C.2. To aid the readability of the proofs be-
low, we define ∆ = Z ∪ {∞} — the set of suprema of
sets of time differences. (For every timely-coordination spec
(I, δ), this is the range of δ. See the definition of a timely-
coordination spec in Section 4 for more details.)12

Observation C.3. By definition of ⊚≤ε,

• ⊚≤∞ = �.

• ⊚≤0ψ means “ψ has occurred, either now or in the
past”.

• Additivity: ⊚≤ε1⊚≤ε2ψ = ⊚≤ε1+ε2ψ for every ε1, ε2∈∆
and for every ψ ∈ FR.

• Monotonicity: (ε1≤ε2 & ψ⊆φ) ⇒ ⊚
≤ε1ψ ⊆ ⊚≤ε2φ,

for every ε1, ε2 ∈ ∆ and for every ψ, φ ∈ FR.

• ⊚≤ε(∩Ψ) ⊆
⋂
{⊚≤εψ | ψ ∈ Ψ}, for every ε ∈ ∆ and for

every set of events Ψ ⊆ FR.

Observation C.4. By definition of ⊚ε, for every event
ψ ∈ FR we have:

• ⊚ε1 ⊚≤ε2 ψ = ⊚
≤ε1
⊚
ε2 ψ = ⊚

≤ε1+ε2ψ, for every
ε1, ε2 ∈ ∆ \ {∞}.
• ⊚εψ ⊆ ⊚≤εψ, for every ε ∈ ∆ \ {∞}.
• ⊚ε commutes with intersection for every ε ∈ ∆ \ {∞}:
⊚
ε(∩Ψ) =

⋂
{⊚εψ | ψ ∈ Ψ} for every set of events

Ψ ⊆ FR.

C.2 Proofs of Propositions from Section 4
The soundness of our definition of timely common knowl-

edge is based on the following part of Tarksi’s celebrated
theorem.

Definition C.5 (Complete Lattice). A lattice L is
called complete if each subset S ⊆ L has both a supremum
(i.e. least upper bound, denoted

∨
S) and an infimum (i.e.

greatest lower bound, denoted
∧
S).

Theorem C.6 (Tarski [29]). Let L be a complete lat-
tice. Every monotone function f : L → L has a greatest
fixed point. Furthermore, this greatest fixed point is given by∨{

l ∈ L | l ≤ f(l)
}

.

Observation C.7. FRI , equipped with the lattice struc-
ture from Definition 4.3, constitutes a complete lattice; the
supremum of every subset of FRI is given by coordinate-wise
union, and its infimum — by coordinate-wise intersection.

Proof of Lemma 4.5. By monotonicity of Ki for every
i ∈ I and of ⊚≤ε for every ε ∈ ∆, we obtain that fδψ is mono-
tone. By Observation C.7, and by Tarski’s Theorem C.6,
the set of fixed points of fδψ has a greatest element, which

12 As noted above, we more generally define the set of time
differences as ∆ = (T − T) ∪ {∞}. E.g. if T = R≥0, then
∆ = (−∞,∞].

equals
∨{

ξ̄ ∈ FRI | ξ̄ ≤ fδψ(ξ̄)
}

. This proves both that CδIψ
is well-defined (part 1 of the lemma) and the induction rule
for timely common knowledge (part 2).

To prove monotonicity of CδI (part 3), let ψ, φ ∈ FR s.t.
ψ ⊆ φ. Once again, by monotonicity of Ki for every i ∈ I,
we obtain that fδψ(ϕ̄) ≤ fδφ(ϕ̄) for every ϕ̄ ∈ FRI . By sub-

stituting ϕ̄ , CδIψ, and by definition of CδIψ, we obtain
CδIψ = fδψ(CδIψ) ≤ fδφ(CδIψ). By directly applying the in-

duction rule for timely common knowledge with ξ̄ , CδIψ,
we obtain that CδIψ ≤ CδIφ.

Proof of Theorem 4.6. We begin the proof of part 1
by noting that for every i ∈ I, by definition CδIψ = fδψ(CδIψ),

and therefore (CδIψ)i is of the form Ki(· · · ). Hence, by Ob-

servation C.1, CδIψ is an I-ensemble. Let (i, j) ∈ I 2̄ and
(r, t) ∈ (CδIψ)i. By definition of CδI and by the knowl-
edge axiom,

(CδIψ)i = Ki

(
ψ ∩

⋂
k∈I\{i}

⊚
≤δ(i,k)(CδIψ)k

)
⊆

⊆ ψ ∩
⋂

k∈I\{i}

⊚
≤δ(i,k)(CδIψ)k ⊆ ⊚

≤δ(i,j)(CδIψ)j .

Thus, we obtain that (r, t) ∈ ⊚≤δ(i,j)(CδIψ)j . By definition

of ⊚≤δ(i,j), there exists t′ ∈ T such that t′ ≤ t + δ(i, j)
and (r, t′) ∈ (CδIψ)j , and the proof of part 1 is complete.
Similarly, we have

(CδIψ)i = Ki

(
ψ ∩

⋂
k∈I\{i}

⊚
≤δ(i,k)(CδIψ)k

)
⊆

⊆ ψ ∩
⋂

k∈I\{i}

⊚
≤δ(i,k)(CδIψ)k ⊆ ψ

for every i ∈ I, thus proving part 2 as well.
We move on to proving part 3. Let ē be a δ-coordinated

I-ensemble s.t. ∪ē ⊆ ψ. First, we show that ē ≤ fδψ(ē).
Let i ∈ I. Let (r, t) ∈ ei and let j ∈ I \ {i}. Since ē is
δ-coordinated, there exists t′ ∈ T s.t. t′ ≤ t + δ(i, j) and

(r, t′) ∈ ej . By definition of ⊚≤δ(i,j), we therefore obtain

(r, t) ∈ ⊚≤δ(i,j)ej . Thus, and since ∪ē ⊆ ψ, we have

ei ⊆ ψ ∩
⋂

j∈I\{i}

⊚
≤δ(i,j)ej .

By definition of an ensemble, ei is i-local, and thus ei =
Kiei. Hence, by monotonicity of Ki,

ei = Kiei ⊆ Ki

(
ψ ∩

⋂
j∈I\{i}

⊚
≤δ(i,j)ej

)
=
(
fδψ(ē)

)
i
.

By the induction rule for timely common knowledge, we thus
have ē ≤ CδIψ, completing the proof of part 3. Part 4 follows
from part 3 by setting ψ , ∪ē. Finally, one direction of
part 5 follows from part 4 by taking the union of both sides,
while the other follows by setting ψ , ∪ē in part 2.

C.3 Proofs of Propositions from Section 5

C.3.1 Preliminaries
In order to harness the tools of Section 4 to analyzing

timely-coordinated response, we introduce some machinery
relating agent responses in a protocol P ∈ P to an ensemble
in the space ΩR(P,γ) defined by the set of runs of P . Recall
that as mentioned above, we slightly abuse notation at times
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when working in ΩR(P,γ) for some protocol P , by writing φ
to refer to φ ∩ΩR(P,γ).

Definition C.8. Let τ = (γ, φ, I, δ, ᾱ) be a TCR and let

P ∈ P. We denote by ePᾱ ∈ FR(P,γ)
I the I-ensemble ePᾱi ,

{(r, t) ∈ ΩR(P,γ) | i performs αi at (r, t) according to P},
for every i ∈ I.

Observation C.9. Let τ = (γ, φ, I, δ, ᾱ) be a TCR and
let P ∈ P. Since the actions of each agent i ∈ I at each point
are defined by its state at that point, it follows that ePᾱi is
i-local, and thus ēPᾱ is indeed an I-ensemble.

Observation C.10. Let τ = (γ, φ, I, δ, ᾱ) be a TCR. A
protocol P ∈ P solves τ iff all the following hold in ΩR(P,γ):

• ePᾱi occurs at most once during each run r ∈ R(P, γ),
for every agent i ∈ I.

• ēPᾱ is δ-coordinated.

• ∪ēPᾱ ⊆ ⊚≤0φ. (I.e. φ must occur before or when any
response does.)

• φ ⊆ �ePᾱi , for every i ∈ I. (I.e. all responses must
occur at some point along any φ-triggered run.)

Observation C.11. Let τ = (γ, φ, I, δ, ᾱ) be a TCR. A
protocol P ∈ P is a time-optimal solution to τ iff it both
solves τ and for every protocol P ′ solving τ that is run-

equivalent to P , we have e
P ′ᾱ
i ⊆ ⊚≤0ePᾱi in ΩR(P−ᾱ,γ) for

every i ∈ I.

C.3.2 Proofs

Proof of Corollary 5.2. We must show that under
the conditions of the corollary, ēPᾱ ≤ CδI (⊚≤0φ) holds in
ΩR(P,γ)

I . Since P solves τ , by Observation C.10 we have

both that ēPᾱ is δ-coordinated and that ∪ēPᾱ ⊆ ⊚≤0φ.
Thus, by Theorem 4.6(3), we obtain ēPᾱ ≤ CδI (⊚≤0φ),
as required.

The following somewhat technically-phrased lemma lies
at the heart of Corollaries C.13 and 5.3, whose proofs follow
below.

Lemma C.12. Let τ = (γ, φ, I, δ, ᾱ) be a TCR and let
P−ᾱ be a non-response component of a protocol such that
φ ⊆ �

(
CδI (⊚≤0φ)

)
i

holds in ΩR(P−ᾱ,γ) for some i ∈ I. The
protocol P = (P−ᾱ, Pᾱ) s.t. in Pᾱ each i ∈ I responds at the
first instant at which

(
CδI (⊚≤0φ)

)
i

holds (in ΩR(P−ᾱ,γ)), is
a time-optimal solution for τ .

Proof. We note that by Theorem 4.6(1),
(
CδI (⊚≤0φ)

)
j

is j-local for every j ∈ I, and thus Pᾱ is well-defined.13 We

13 In some runs of certain contexts under a continuous-time
model, the set of times at which

(
CδI (⊚≤0φ)

)
j

holds does not

attain its infimum value, and thus “
(
CδI (⊚≤0φ)

)
j

holds for

the first time” is not necessarily a j-local event. To accom-
modate such cases, we may adapt the response component
Pᾱ s.t. each j ∈ I responds exactly 1 time unit after the in-
fimum of times at which

(
CδI (⊚≤0φ)

)
j

holds. (It is straight-

forward to show that this is indeed a j-local event). The
proof is easily adaptable to both show that this definition
yields a solution for τ and to prove that in such pathological
cases, no time-optimal solution for τ exists.

now show that P solves τ by showing that it satisfies all four
conditions of Observation C.10.

By definition of Pᾱ, for each j ∈ I the event ePᾱj oc-

curs at most once during each r ∈ R(P, γ). Let (j, k) ∈ I 2̄

and let (r, t) ∈ ePᾱj . By definition of Pᾱ, we have that

(r, t) ∈
(
CδI (⊚≤0φ)

)
j
. By Theorem 4.6(1), CδI (⊚≤0φ) is a

δ-coordinated ensemble, and thus there exists t′ ≤ t+δ(j, k)
s.t. (r, t′) ∈

(
CδI (⊚≤0φ)

)
k
. By definition of Pᾱ, there exists

t′′ ≤ t′ s.t. (r, t′′) ∈ ePᾱk . As t′′ ≤ t′ ≤ t+ δ(j, k), we obtain

that ēPᾱ is δ-coordinated.
Let j ∈ I. By Observation C.3 (monotonicity), we con-

clude that ePᾱi ⊆ ⊚≤δ(i,j)ePᾱj ⊆ �ePᾱj . By definition of

Pᾱ, we have
(
CδI (⊚≤0φ)

)
i
⊆ ⊚≤0ePᾱi . By both of these, by

the conditions of the lemma, and once again by Observa-
tion C.3 (monotonicity), we obtain φ ⊆ �

(
CδI (⊚≤0φ)

)
i
⊆

�⊚
≤0 ePᾱi ⊆ �⊚≤0

�ePᾱj = �ePᾱj . Finally, by definition of

Pᾱ and by Theorem 4.6(2), we have ∪ēPᾱ ⊆ ∪CδI (⊚≤0φ) ⊆
⊚
≤0φ, thus completing the proof of P solving τ .
We move on to show that P constitutes a time-optimal

solution to τ . Let P ′ = (P−ᾱ, P
′
ᾱ) be a protocol solv-

ing τ that is run-equivalent to P . Let j ∈ I. By Corol-

lary 5.2, we have e
P ′ᾱ
j ⊆

(
CδI (⊚≤0φ)

)
j
. By definition of Pᾱ,

we have
(
CδI (⊚≤0φ)

)
j
⊆ ⊚≤0ePᾱj . We combine these to ob-

tain e
P ′ᾱ
j ⊆ ⊚≤0ePᾱj , and thus, by Observation C.11, the

proof is complete.

Corollary C.13. Let τ = (γ, φ, I, δ, ᾱ) be a TCR and
let P ∈ P. The following are equivalent:

1. P is run-equivalent to a protocol that solves τ .

2. φ ⊆ �
(
CδI (⊚≤0φ)

)
i

in ΩR(P,γ), for every i ∈ I.

3. φ ⊆ �
(
CδI (⊚≤0φ)

)
i

in ΩR(P,γ), for some i ∈ I.

Proof.
1 ⇒ 2: Let i ∈ I. Let P ′ be a protocol solving τ that

is run-equivalent to P . Recall that ΩR(P ′,γ) ' ΩR(P,γ). By

Observation C.10, we have φ ⊆ �eP
′
ᾱ
i . By Corollary 5.2, we

have e
P ′ᾱ
i ⊆

(
CδI (⊚≤0φ)

)
i
. We combine these two with Ob-

servation C.3 (monotonicity) to obtain φ ⊆ �
(
CδI (⊚≤0φ)

)
i
.

2 ⇒ 3: Immediate.
3 ⇒ 1: Follows immediately from Lemma C.12, since

ΩR(P,γ) ' ΩR(P−ᾱ,γ).

Proof of Corollary 5.3. By Corollary C.13(1 ⇒ 2),
we have φ ⊆ �

(
CδI (⊚≤0φ)

)
i

holding inΩR(P,γ) ' ΩR(P−ᾱ,γ).
By Lemma C.12, the proof is complete.

C.4 From Fixed-Point Definition to
Nested-Knowledge Definition

C.4.1 Definitions and Propositions
In order to precisely phrase our nested-knowledge charac-

terisation of timely common knowledge, we first introduce
an additional definition.14

14 As our notation P(Gδ) may suggest, this is in fact the
set of paths in a directed graph Gδ having I as vertices
and with edges wherever δ < ∞. For an in-depth graph-
theoretic study of Gδ and of its elaborate relation to tuples
of δ-coordinated timestamps, we refer the reader to [15] or
to [16, Chapter 5]. For a study of the connection between the
graph-theoretic properties of Gδ and the required delivery
guarantees required to solve a TCR, we refer the reader to
[16, Chapter 9].
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Definition C.14. Let I be a set and let δ : I 2̄ → ∆. We
define

P(Gδ) ,
{

(i1, . . . , in)∈I ∗̄ | ∀m∈ [n−1] : δ(im, im+1) <∞
}
.

Example C.15. By the above definition, if I = {i, j},
then every element of P(Gδ) is either (i, j, i, j, i, j, . . .︸ ︷︷ ︸

n

) or

(j, i, j, i, j, i, . . .︸ ︷︷ ︸
n

), for some n ∈ N. (If |I| > 2, then P(Gδ) is

much richer.)

Second, we present a variation of a definition from [12,
Chapter 4], which we utilize in this section.

Definition C.16 (Perfect Recall).
A system R ⊆ R is said to exhibit perfect recall if for every
r ∈ R, for every i ∈ I and for every t ∈ T, the state of i at t
in r uniquely determines the set

{
ri(t
′) | t′ ∈ T \ [t,∞)

}
of

states of i in r prior to t.

Observation C.17. If P fip
γ is a full-information protocol

in a context γ, then R(P fip
γ , γ) exhibits perfect recall.

Third, we present a definition based upon [12, Chapter 4]
and some basic properties thereof.

Definition C.18 (Stability). Let R ⊆ R. An event
ψ ∈ FR is said to be stable if once ψ holds at some time
during a run r ∈ R, it continues to hold for the duration of
r. Formally, using our notation, ψ is stable iff ψ = ⊚≤0ψ.

Observation C.19. By Definition C.18,

• By Observation C.3 (additivity), ⊚≤0 is idempotent.
Thus, ⊚≤0φ is a stable event for every φ ∈ FR.

• ψ ∩ φ is a stable event for any two stable events
ψ, φ ∈ FR.

Indeed, since ⊚≤0φ is stable for every φ, we do not lose
much in the perspective of Section 5 if we restrict our study
to timely common knowledge of stable events. We can now
precisely phrase our constructive characterisation of timely
common knowledge. See the following sections for a proof
and a discussion of the various requirements of the following
theorem.

Theorem C.20. Let (I, δ) be a timely-coordination spec,
let R ⊆ R be a system exhibiting perfect recall and let ψ ∈
FR be a stable event. Assume, furthermore, that either of
the following holds:

1. δ <∞.

2. R = R(P, γ), for some protocol P and context γ s.t.
P either solves (γ, ψ, I, δ, ᾱ) for some ᾱ, or is run-
equivalent to a protocol that does.

For every i ∈ I,

(CδIψ)i =
⋂

(i,i2,...,in)∈P(Gδ)

Ki⊚
δ(i,i2)Ki2⊚

δ(i2,i3)Ki3 · · ·⊚
δ(in−1,in)Kinψ

(2)
holds in ΩR.

Observation C.21. By Observation C.17, and since it is
straitforward to show that a TCR is solvable iff it is solvable
by a full-information protocol, condition 2 of Theorem C.20
is met if R = R(P fip

γ , γ), for a context γ admitting a full-

information protocol P fip
γ s.t. (γ, ψ, I, δ, ᾱ) is solvable (by

some protocol) for some ᾱ.

Corollary C.22. The time-optimal solution from Corol-
lary 5.3, under (any of) the conditions of Theorem C.20

(with regard to R , R(P−ᾱ, γ) and ψ , ⊚≤0φ), is for each
agent i ∈ I to respond at the first instant at which all nested-
knowledge formulae of the form

Ki ⊚
δ(i,i2) Ki2 ⊚

δ(i2,i3) · · ·Kin−1 ⊚
δ(in−1,in) Kin ⊚

≤0 φ

hold (in ΩR(P−ᾱ,γ)) for all (i, i2, . . . , in) ∈ P(Gδ).

C.4.2 Background
In order to prove Theorem C.20, we perform an analysis

of timely common knowledge of stable events. For reasons
that will soon be apparent, we conduct this analysis un-
der the assumption of perfect recall. To make our analysis
somewhat cleaner and more generic, we first aim to distill
the property of sets of runs exhibiting perfect recall that is
of interest to us, namely that in such sets of runs, knowl-
edge of a stable event is itself stable. The following is given
in [12, Exercise 4.18(b)], and its proof follows directly from
the definitions of stability and of knowledge.

Claim C.23. Let R ⊆ R be a system exhibiting perfect
recall and let ψ ∈ FR. If ψ is stable, then Kiψ is stable as
well, for every i ∈ I.

C.4.3 Proof
Returning to our results and working toward proving The-

orem C.20, we first derive a stability property for timely
common knowledge (given in Claim C.25.)

Claim C.24. Let R ⊆ R be a system exhibiting perfect
recall. For every event ψ ∈ FR and for every agent i ∈ I, it
holds that ⊚≤0Kiψ ⊆ Ki ⊚

≤0 ψ.

Proof. By Observation C.3, we have ψ ⊆ ⊚≤0ψ. Thus,
by monotonicity of ⊚≤0 and of Ki, we have ⊚≤0Kiψ ⊆
⊚
≤0Ki ⊚

≤0 ψ. By Observation C.19, ⊚≤0ψ is stable, and
therefore, by Claim C.23, Ki ⊚

≤0 ψ is stable as well, and
thus equals ⊚≤0Ki ⊚

≤0 ψ, by applying Observation C.19
once more. We combine all these to obtain ⊚≤0Kiψ ⊆
⊚
≤0Ki ⊚

≤0 ψ = Ki ⊚
≤0 ψ, as required.

Claim C.25. Let (I, δ) be a timely-coordination spec and
let R ⊆ R be a set of runs exhibiting perfect recall. For every
stable ψ ∈ FR, all coordinates of CδIψ are stable.

Proof. Let i ∈ I. By Definition C.18 and by Observa-
tion C.3, it is enough to show that ⊚≤0(CδIψ)i ⊆ (CδIψ)i.
Indeed, we have

⊚
≤0 (CδIψ)i = by definition of CδI

= ⊚
≤0 Ki

(
ψ ∩

⋂
j∈I\{i}

⊚
≤δ(i,j)(CδIψ)j

)
⊆

by Claim C.24

⊆ Ki ⊚
≤0
(
ψ ∩

⋂
j∈I\{i}

⊚
≤δ(i,j)(CδIψ)j

)
⊆

by Observation C.3

⊆ Ki

(
⊚
≤0ψ ∩

⋂
j∈I\{i}

⊚
≤0
⊚
≤δ(i,j) (CδIψ)j

)
⊆

by Observation C.3 (additivity)
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⊆ Ki

(
⊚
≤0ψ ∩

⋂
j∈I\{i}

⊚
≤δ(i,j)(CδIψ)j

)
⊆

by stability of ψ

⊆ Ki

(
ψ ∩

⋂
j∈I\{i}

⊚
≤δ(i,j)(CδIψ)j

)
=

by definition of CδI

= (CδIψ)i.

Claims C.23 and C.25 lead us to consider, for stable ψ and
given perfect recall, a slightly different definition for fδψ than

the one given in Definition 4.4. This modified version of fδψ,

which we denote by gδψ, differs by the use of ⊚δ(i,j) in lieu

of ⊚≤δ(i,j), and by not intersecting over eventual knowledge
requirements.

Definition C.26. Let (I, δ) be a timely-coordination spec
and let R ⊆ R. For each ψ ∈ FR, we define a function
gδψ : FIR → FIR by

gδψ : (xi)i∈I 7→

Ki

(
ψ ∩

⋂
j∈I\{i}
δ(i,j)<∞

⊚
δ(i,j)xj

)
i∈I

,

and denote its greatest fixed point by Ç δ
I ψ.

Using an argument completely analogous to the proof of
Lemma 4.5, it may be shown that Ç δ

I ψ is well-defined. Fur-
thermore, the same argument shows that Ç δ

I also satisfies
the obvious analogues of the induction rule (with regard to
gδψ) and of the monotonicity property from Lemma 4.5.

We now present a key observation, which stands at the
heart of our proof of Theorem C.20. While, even in the
presence of perfect recall and when ψ is stable, gδψ 6= fδψ
(e.g. when applied to certain unstable events), it so happens
that under certain conditions, the greatest fixed points of
both of these functions coincide.

Lemma C.27. Let (I, δ) be a timely-coordination spec, let
R ⊆ R be a set of runs exhibiting perfect recall and let
ψ ∈ FR. Furthermore, assume that either ψ ⊆ �(CδIψ)i
for every i ∈ I, or δ <∞. If ψ is stable, then Ç δ

I ψ = CδIψ.

Proof.
≥: For every i ∈ I, we have

(CδIψ)i = by definition of CδI

= Ki

(
ψ ∩

⋂
j∈I\{i}

⊚
≤δ(i,j)(CδIψ)j

)
⊆

intersecting over fewer events

⊆ Ki

(
ψ ∩

⋂
j∈I\{i}
δ(i,j)<∞

⊚
≤δ(i,j)(CδIψ)j

)
=

by Observation C.4

= Ki

(
ψ ∩

⋂
j∈I\{i}
δ(i,j)<∞

⊚
δ(i,j)

⊚
≤0 (CδIψ)j

)
=

by Claim C.25

= Ki

(
ψ ∩

⋂
j∈I\{i}
δ(i,j)<∞

⊚
δ(i,j)(CδIψ)j

)
=

by definition of gδψ

=
(
gδψ(CδIψ)

)
i
.

Thus, by the induction rule for Ç δ
I and for gδψ, we obtain

CδIψ ≤ Ç δ
I ψ, as required.

≤: For every i ∈ I, by monotonicity of Ki we have

(Ç δ
I ψ)i = by definition of Ç δ

I

= Ki

(
ψ ∩

⋂
j∈I\{i}
δ(i,j)<∞

⊚
δ(i,j)(Ç δ

I ψ)j
)
⊆

by Observation C.4

⊆ Ki

(
ψ ∩

⋂
j∈I\{i}
δ(i,j)<∞

⊚
≤δ(i,j)(Ç δ

I ψ)j
)
⊆

as ψ ⊆ �(CδIψ)j for every j ∈ I
(expression unchanged if δ <∞)

⊆ Ki

(
ψ ∩

⋂
j∈I\{i}
δ(i,j)=∞

�(CδIψ)j ∩
⋂

j∈I\{i}
δ(i,j)<∞

⊚
≤δ(i,j)(Ç δ

I ψ)j
)
⊆

by the other direction (≥) of this

proof, and by monotonicity of �

⊆ Ki

(
ψ ∩

⋂
j∈I\{i}
δ(i,j)=∞

�(Ç δ
I ψ)j ∩

⋂
j∈I\{i}
δ(i,j)<∞

⊚
≤δ(i,j)(Ç δ

I ψ)j
)

=

as � = ⊚≤∞

= Ki

(
ψ ∩

⋂
j∈I\{i}

⊚
≤δ(i,j)(Ç δ

I ψ)j
)

=

by definition of fδψ

=
(
fδψ(Ç δ

I ψ)
)
i
.

Thus, by the induction rule for timely common knowledge,
we have Ç δ

I ψ ≤ CδIψ.15

One may wonder why we have worked so hard, and added
the additional assumption of perfect recall (among others),
to obtain CδIψ, under the above assumptions, as a fixed point
of gδψ rather than of fδψ. The answer is simple: gδψ commutes

with the meet operation, while fδψ does not. (Moreover,

as a result, gδψ is downward-continuous while fδψ, even in a

15 It should be noted that we could have saved ourselves
some hardship in this direction of the proof, by not inter-
secting over eventual knowledge requirements when defining
fδψ. While this would still have allowed us to obtain some of
our main results, such as Corollary 5.3, in this case many of
our other results regarding timely common knowledge would
have required the additional assumption that ψ ⊆ �(CδIψ)i,
reducing from their generality and usefulness. The added
strength of the approach we have chosen presents itself not
only while discussing eventual common knowledge in Ap-
pendix D.2, but in other settings [16, Section 9.3] as well.
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discrete-time model, is generally not.) This fact paves our
way toward proving Theorem C.20.

Proof of Theorem C.20. The following proof applies
to prove both parts of the theorem. As ψ is stable and R
exhibits perfect recall, by Lemma C.27,16 we obtain CδIψ =
Ç δ
I ψ.
It is easy to verify that gδψ commutes with both finite and

infinite meet. Thus, it is downward-continuous and by a
well-known theorem popularly referred to as Kleene’s fixed-
point theorem17, we obtain

Ç δ
I ψ =

∧
n∈N

(gδψ)n (ΩR
I). (3)

Since ⊚ε commutes with intersection for every ε ∈ ∆, andKi

commutes with intersection for every i ∈ I, we thus obtain,
for every i ∈ I, that

(CδIψ)i =

=
⋂
n∈N

(
(gδψ)n (ΩR

I)
)
i

=

= Kiψ ∩ Ki

(
ψ ∩

⋂
i2∈I\{i}
δ(i,i2)<∞

⊚
δ(i,i2)Ki2ψ

)
∩

∩ Ki

(
ψ ∩

⋂
i2∈I\{i}
δ(i,i2)<∞

⊚
δ(i,i2)Ki2

(
ψ ∩

⋂
i3∈I\{i2}
δ(i2,i3)<∞

⊚
δ(i2,i3)Ki3ψ

))
∩

∩ · · · =

= Kiψ ∩ Ki

( ⋂
i2∈I\{i}
δ(i,i2)<∞

⊚
δ(i,i2)Ki2ψ

)
∩

∩ Ki

( ⋂
i2∈I\{i}
δ(i,i2)<∞

⊚
δ(i,i2)Ki2

( ⋂
i3∈I\{i2}
δ(i2,i3)<∞

⊚
δ(i2,i3)Ki3ψ

))
∩

∩ · · · =

=
⋂

(i,i2,...,in)∈P(Gδ)

Ki ⊚
δ(i,i2) Ki2 ⊚

δ(i2,i3) Ki3 · · · ⊚
δ(in−1,in) Kinψ.

C.4.4 Discussion
Theorem C.20, which we have just proved, hinges on quite

a few conditions, especially when δ ≮ ∞. The two condi-
tions that are required even when δ < ∞, namely perfect
recall and stability of ψ, allow us to define gδψ using ⊚δ(i,j)

instead of ⊚≤δ(i,j). Without this modification, gδψ would not
commute with intersection, resulting, instead of (2), in⋂
(i,i2,...,in)∈P(Gδ)

Ki

(
ψ∩⊚δ(i,i2)Ki2

(
· · ·ψ∩⊚δ(in−1,in)Kin(ψ) · · ·

))
.

16 For the proof given condition 2, at this point we also
use the fact that by Corollary C.13, we have that ψ ⊆
�

(
CδI (⊚≤0ψ)

)
i

= �(CδIψ)i for every i ∈ I.
17 See [23] for an investigation of the origins of this theo-
rem, see [20, p. 348] for Kleene’s first recursion theorem and
for its proof that implies this theorem, and see [21] or [1,
Theorem 1.2.14] for a statement of this theorem in terms of
lattices, continuity and greatest fixed points.

When δ ≮∞, it is condition 2 of Theorem C.20 that allows
us to define gδψ without intersecting over eventual knowledge

requirements. Without this modification, gδψ would not be
downward-continuous. (This would also have been the case,

had gδψ been defined using ⊚≤δ(i,j) instead of ⊚δ(i,j) when
under a continuous-time model.) Without downward con-
tinuity of gδψ, Kleene’s fixed-point theorem could not have
been utilized, forcing us to go beyond the “ω’th power” of
gδψ in the r.h.s. of (3), to a greater ordinal power thereof [1,
Theorem 1.2.11]. Incidentally, this may be viewed as a con-
crete example, of sorts, of Barwise’s statement in [3] regard-
ing various definitions of common knowledge, according to
which in some models, taking only the intersection of finite
approximations (i.e. only the results of finitely-many itera-
tions of the relevant function f , starting from the top of the
lattice) yields a weaker state of knowledge than the fixed-
point of f , which is equivalent to taking the intersection of
all (i.e. including transfinite) approximations.

We conclude this section with an observation. For certain
δ functions, P(Gδ) is finite,18 and thus the intersection in
(2) is finite. (See the discussion of ordered response in Ap-
pendix D.1 for an example.) This observation may seem,
at first glance, to clash with the infinitary nature of fixed
points in general, and of greatest fixed points in particular.
It is worthwhile to note that what reconciles these is that in
this case, (gδψ)|I| is constant and therefore its value, which
is a finite intersection of nested-knowledge events, is its only
fixed point, and thus its greatest fixed point, and hence the
greatest fixed point of gδψ as well. Furthermore, by Corol-

lary C.13, solvability of τ implies that ψ ⊆ �(CδIψ)i for
every i ∈ I and thus, as noted above, Corollaries 5.2 and 5.3
would have still held had we defined fδψ without intersect-
ing over eventual-knowledge requirements (i.e. similarly to

gδψ, but using ⊚≤δ(i,j) in lieu of ⊚δ(i,j)). In this case, the

function (fδψ)|I| would have also been constant, and thus,
similarly, its value would have been its greatest fixed point,
and thus the greatest fixed point of fδψ as well.

D. COMPARISON TO, AND DERIVATION
OF PREVIOUS RESULTS

In this section, we show how some previously-known re-
sults may be derived from the novel results we have intro-
duced in this paper.

D.1 Response Problems
In this section, we survey the response problems defined

and studied by Ben-Zvi and Moses [5, 4, 6, 7], and their
knowledge-theoretic results for these problems. We reformu-
late these problems, their results, and the associated defini-
tions to match our notation, and show how our definitions
and results from Section 5 extend each one of these, even
though the tools used to derive our results are vastly differ-
ent than their tools. This provides us with a “sanity check”
of sorts, verifying that we have not committed the sin of
generalizing our tools to the extent of weakening the results
they yield for simple cases.

The first, most-basic response problem defined in [5] is
that of ordered response. In this problem, finitely many
agents I = {im}nm=1 must respond to an event in a pre-

18 This happens iff both |I| <∞ and Gδ has only trivial (i.e.
singleton) strongly connected components.
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defined order: im+1 may not respond before im does. Using
our notation, this is a special case of timely-coordinated re-
sponse, for

δ(ik, il) ,

{
0 k = l + 1

∞ otherwise.
(4)

For this problem, they have shown that whenever an agent
im responds in a solving protocol exhibiting perfect recall,
it holds that

KmKm−1 · · ·K1 ⊚
≤0 φ, (5)

and that in a full-information protocol, for each im to re-
spond as soon as (5) holds constitutes what we have defined
as a time-optimal solution.19

By Theorem C.20, we have, for δ as defined in (4), that
when τ is solvable and in the presence of perfect recall (e.g.
in a full-information protocol),(
CδI (⊚≤0φ)

)
m

=
⋂
k∈N

1≤i1<···<ik≤m

Kik · · ·Ki1 ⊚
≤0 φ =

= KmKm−1 · · ·K1 ⊚
≤0 φ.

Thus, for ordered response, Corollaries 5.2 and 5.3 reduce
to the above results.

The second problem presented in [5, 4] is a variant of the
firing squad problem [27, 10] called simultaneous response.
In this problem, all agents I must respond to an event si-
multaneously. Using our notation, this is a special case of
timely-coordinated response, for δ ≡ 0. For this problem,
they have shown that CI ⊚

≤0 φ is the associated state of
knowledge, in the same sense as above, i.e. when the agents
respond (in a solving protocol exhibiting perfect recall), they
share common knowledge of the fact that φ has occurred,
and for each agent to respond as soon as she knows that
common knowledge of ⊚≤0φ has been attained constitutes a
time-optimal solution (for a full-information protocol, when
the problem is solvable). Once again, Corollaries 5.2 and
5.3 reduce to the above results under the above assump-
tions, since by Theorem C.20 and by Observation A.4, we
have

(
CδI (⊚≤0φ)

)
i

= KiCI ⊚
≤0 φ = CI ⊚

≤0 φ, for δ ≡ 0.
The third and last problem presented in [4] is a general-

ization of both ordered response and simultaneous response,
called ordered joint response. In this problem, the agents are
partitioned into pairwise-disjoint sets I =

⋃n
m=1 Im, and the

agents in each such set must respond simultaneously, s.t. the
agents in a set Im+1 may not respond before the agents in
Im do. Under our notation, this is a special case of timely-
coordinated response, for

δ(i, j) ,

0
∃k ∈ [n] : {i, j} ⊆ Ik or

∃k ∈ [n− 1] : i ∈ Ik+1 & j ∈ Ik
∞ otherwise.

(6)

For this problem, they have shown that the associated state
of knowledge, in the above sense, for an agent i ∈ Im, is
CImCIm−1 · · ·CI1 ⊚≤0 φ.

By Theorem C.20, by Observation A.4 and by Kj com-
muting with intersection for every j ∈ I, we have, in this
case, for δ as defined in (6) and for i ∈ Im,(

CδI (⊚≤0φ)
)
i

=

19 Throughout their analysis, Ben-Zvi and Moses implicitly
assume that the problems they consider are solvable.

=
⋂

(i,i2,...,in)∈P(Gδ)

KiKi2 · · ·Kin ⊚
≤0 φ =

= Ki ◦
( ⋂

(i1,...,in)∈Im∗̄
Ki1Ki2 · · ·Kin

)
◦
( ⋂

(i1,...,in)∈(Im−1)∗̄

Ki1Ki2 · · ·Kin

)
◦

◦ · · · ◦
( ⋂

(i1,...,in)∈I1∗̄
Ki1Ki2 · · ·Kin

)
⊚
≤0 φ =

= KiCImCIm−1 · · ·CI1 ⊚
≤0 φ =

= CImCIm−1 · · ·CI1 ⊚
≤0 φ.

Thus, once more, Corollaries 5.2 and 5.3 reduce to the above
results in this case as well.

The analogous results of Ben-Zvi and Moses for the rest
of the response problems that they define (general ordered
response [4], weakly-timed response [7] and tightly-timed
response [7]) may be readily derived from our results in a
similar manner — the details are left for the reader.

Having surveyed all the above response problems, one
property, which is common to all of them (as well as to
the rest of the response problems defined by Ben-Zvi and
Moses) should be spelled out explicitly: they are all rep-
resentable as special cases of timely-coordinated response,
using δ s.t. for each (i, j) ∈ I 2̄, either δ(i, j) = ∞, or
δ(j, i) = ∞, or δ(i, j) = −δ(j, i), i.e. the difference between
the response times of i and j is bounded either from one
side at most, or tightly (i.e. specified exactly). We note that
the absence of this property in timely-coordinated response
introduced a significant amount of complexity into our anal-
ysis, both technically and conceptually, and that without it,
the machinery with which we analyzed timely-coordinated
response could have been significantly simplified. Inciden-
tally, for an analysis of timely-coordinated response that fol-
lows and extends the synchronous causality (“syncausality”)
approach of Ben-Zvi and Moses for analyzing response prob-
lems (and which makes this statement about the complexity
introduced by an arbitrary δ function more concrete), the
reader is referred to [16, Chapter 6].

D.2 Common Knowledge and Variants
For the duration of this section, fix a system R ⊆ R, an

event ψ ∈ FR and a set of agents I ⊆ I. As noted above,
while all previously-studied variants of common knowledge
that are surveyed in Appendix B (and other previously-
studied variants of common knowledge, such as continuous
common knowledge [18]) are defined as fixed points of func-
tions on FR, this is not the case with timely common knowl-
edge, which we define as a fixed point of a function on FRI .
Intuitively, as noted above, this stems from the asymmetry
of timely coordination with regard to the requirements posed
on the various agents. Given this intuition, one may expect
δ-common knowledge to reduce, for constant δ (i.e. symmet-
ric constraints), to a non-tuple fixed point in some way, and
to coincide in some sense with the previously-studied vari-
ants of common knowledge surveyed above. To show this,
we first note that CδIψ = (Ki(ψ ∩ ξi))i∈I , where ξ̄ is the

greatest fixed point of the function f̃δψ : FIR → FIR given by

f̃δψ : (xi)i∈I 7→

 ⋂
j∈I\{i}

⊚
≤δ(i,j)Kj(ψ ∩ xj)


i∈I

.
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Next, we note that if indeed δ is a constant function attain-
ing a nonnegative value, then it is straightforward to verify
that Ki(ψ ∩ ξi) = Ki(ψ ∩ (∩ξ̄)) for every i ∈ I (for ξ̄ as
defined above), yielding CδIψ = (Ki(ψ ∩ (∩ξ̄)))i∈I . More-

over, in this case ∩ξ̄ is the greatest fixed point of ∩f̃δψ. We
now review the previously studied non-tuple variants of com-
mon knowledge surveyed above, and discuss when, and how,
the above-described special case of δ-common knowledge for
constant δ generalizes them.

When δ ≡ ∞, then by definition, δ-coordination is equiva-
lent to eventual coordination, ∩f̃δψ is the function presented

in Theorem B.5(1), and thus CδIψ = (Ki(ψ ∩ C�I ψ))i∈I .
In addition, in this case Theorem 4.6(1,4,5) implies Theo-
rem B.5.

Reducing our results for timely common knowledge to
ε-common knowledge is somewhat more delicate. Assume,
for the remainder of this section, that δ ≡ ε for some finite
ε ≥ 0. (Recall that for ε = 0, ε-coordination is equivalent
to perfect coordination and Theorem B.6 reduces to Theo-
rem B.4.)

In general, ε-coordination is a stricter condition than δ-co-
ordination.20 However, for a (coordinate-wise) stable en-
semble, as well as for an ensemble consisting at most of
one point per agent per run, δ-coordination is equivalent to
ε-coordination — this follows from observing that given a
δ-coordinated ensemble, taking only the first point (or in
a continuous-time model, the infimal point) of each agent
in each run (and no points for runs in which the original
ensemble contained no points for said agent) yields an ε-
coordinated (and hence also δ-coordinated) ensemble. If we
restrict ourselves to stable ψ and to protocols exhibiting
perfect recall, then by Claim C.25, every coordinate of CδIψ
is stable. Under these conditions, it may be verified that

20 This stems from two main “reasons”:

1. δ-coordination is defined using ⊚≤δ(i,j) rather than
⊚

[−δ(j,i),δ(i,j)], which we define to mean “at some time
no earlier than −δ(j, i) from now and no later than
δ(i, j) from now”. It may be readily verified that all the
results in this paper hold for such a definition as well, as
long as this replacement is performed in the definition
of fδψ as well. The only difference is that Claim C.25,
stating that δ-common knowledge is stable, yields to
different proof strategies in this case, e.g. showing that
(⊚≤0(CδIψ)i)i∈I ≤ fδψ((⊚≤0(CδIψ)i)i∈I) and applying
the induction rule for timely common knowledge.

2. Timely coordination is based on pairwise constraints.
The results presented in this paper may be quite read-
ily generalized to deal with arbitrary timing constraints
of various natures, such as, e.g. for some J ⊆ I, “For
every i ∈ J and for every (r, t) ∈ ei, there exists a time
interval T ⊆ T of length at most δJ , s.t. t ∈ T and s.t.
there exist (tj)j∈J ∈ T J satisfying (r, tj) ∈ ej for every
j ∈ J”. (Whatever the timing constraints are, the gen-
eralized definition of fδψi simply intersects on all con-
straints pertaining to i.) Under such a generalization,
ε-coordination is equivalent to δ-coordination, when
setting δI ≡ ε in the above constraint example, and
when providing no further constraints. Furthermore,
in this case the generalization of f̃δψ satisfies that ∩f̃δψ
is the function presented in Theorem B.6(1), and thus
the appropriate generalization of Theorem 4.6(1,4,5) re-
duces to Theorem B.6.

It remains to be seen whether such generalizations as de-
scribed in this footnote are of any real added value.

KiC
ε
Iψ, for every i ∈ I, is stable as well.21 In this case, by

Lemma C.27, CδIψ is the greatest fixed point of gδψ and thus,

CδIψ = (Ki(ψ ∩ ξ))i∈I , where ξ is the greatest fixed point of

∩g̃δψ, where g̃δψ is defined analogously to f̃δψ, but using ⊚δ(i,j)

in lieu of ⊚≤δ(i,j). Analogously to the proof of Lemma C.27,
but in a less cumbersome way (as δ <∞), it may be shown
that in this case CεIψ is the greatest fixed point of ∩g̃δψ as

well, and thus CδIψ = (Ki(ψ ∩ CεIψ))i∈I ,
22 and hence The-

orem 4.6(1,4,5) reduces to Theorem B.6. In the absence of
stability of ψ, or in the absence of perfect recall (at least of
the “relevant events”), things stop working so well. Indeed,
as noted above, in such cases δ-coordination does not neces-
sarily coincide with ε-coordination, and consequently, exam-
ples may be constructed in which CδIψ 6= (Ki(ψ ∩CεIψ))i∈I .

The above discussion raises an interesting question: why
have we not defined CδIψ as (Kiξi)i∈I instead of defining it

as (Ki(ψ ∩ ξi))i∈I? (for ξ̄ the greatest fixed point of f̃δψ.)
Indeed, the connection between such a definition and the
previously-studied variants of common knowledge is much
cleaner to describe [16, Chapter 10], and it yields results
broadly similar to those presented in this paper [16, Chap-
ters 7,8]. Nonetheless, much like (KiC

ε
Iψ)i∈I , and some-

what like (KiC
�

I ψ)i∈I , such a definition does not seem to
naturally lend to a characterisation along the lines of “the
greatest δ-coordinated ensemble contained in ψ”,23 making
it more cumbersome to use than the definition we presented
in Section 4.

21 This may be proved by showing that given stability of ψ
and perfect recall, it holds that ⊚≤0CεIψ ⊆ EεI (ψ∩⊚≤0CεIψ).

22 Another way to derive this equality is by using [12, Exer-
cise 11.17(d)], which shows that, for every i ∈ I, if ψ is stable
and given perfect recall, KiC

ε
Iψ = Ki(∩n∈N(⊚εEI)

nψ), and
to apply (2). It should be noted, though, that the proof
hinted to by [12, Exercise 11.17(d)] strongly relies on a dis-
crete modeling of time, and breaks down in a continuous-
time model, unlike the proof that we sketch above.

23 While the ensemble defined by eventual common knowl-
edge of an event of the form �ψ is the greatest eventually-
coordinated I-ensemble ē satisfying ∪ē ⊆ �ψ (the proof of
this statement is left to the reader), we note that analogous
characterisations for the ensembles defined by ε-common
knowledge and by eventual common knowledge (of events
not necessarily of the form �ψ) are, however, more elusive
to phrase. (Moreover, parts 2–4 of Theorems B.5 and B.6
do not uniquely define these variants of common knowl-
edge either.) In contrast, we note that (Ki(ψ ∩ CεIψ))i∈I
(resp. (Ki(ψ ∩ C�I ψ))i∈I) may be naturally characterised
as the greatest ε-coordinated (resp. eventually-coordinated)
I-ensemble whose union is contained in ψ.
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