
Distributed Computing (2022) 35:123–143
https://doi.org/10.1007/s00446-021-00417-3

Unbeatable consensus

Armando Castañeda1 · Yannai A. Gonczarowski2 · Yoram Moses3

Received: 19 September 2019 / Accepted: 20 December 2021 / Published online: 12 January 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
The unbeatability of a consensus protocol, introduced by Halpern et al. (SIAM J Comput 31:838–865, 2001), is a stronger
notion of optimality than the accepted notion of early stopping protocols. Using a novel knowledge-based analysis, this paper
derives the first explicit unbeatable consensus protocols in the literature, for the standard synchronous message-passing model
with crash failures. These protocols strictly dominate the best kno-wn protocols for uniform and for Nonuniform Consensus,
in some cases improving on them by a large margin. The analysis provides a new understanding of the logical structure of
consensus, and of the distinction between uniform and nonuniform Consensus. All protocols presented in this paper have
very concise descriptions, and are shown to be efficiently implementable.

Keywords Consensus · Uniform consensus · Optimality · Knowledge

1 Introduction

Following [18], we say that a protocol P is a worst-case
optimal solution to a decision task S in a given model if
it solves S, and decisions in P are always taken no later
than the worst-case lower bound for decisions in this prob-
lem, in that model. Here we consider standard synchronous
message-passing models with n processes and an a priori
given bound of at most t < n crash failures per run; it will be
convenient to denote the number of actual failures in a given
run by f . Processes proceed in a sequence of synchronous
rounds. The very first consensus protocols were worst-case
optimal, deciding and stopping at the end of exactly t + 1
rounds in all runs [8,22]. It was soon realized, however, that
they could be strictly improved upon by early stopping pro-
tocols [7], which are guaranteed to halt in min(f + 2, t + 1)
rounds. Such protocols are also worst-case optimal, but can

B Armando Castañeda
armando.castaneda@im.unam.mx

Yannai A. Gonczarowski
yannai@gonch.name

Yoram Moses
moses@ee.technion.ac.il

1 Instituto de Matemáticas, UNAM, Mexico City, Mexico

2 Department of Economics and Department of Computer
Science, Harvard University, Cambridge, USA

3 Electrical Engineering Department, Technion, Haifa, Israel

often decide and stopmuch faster than the original ones. This
paper presents a number of consensus protocols that are not
only worst-case optimal and early stopping, but furthermore
cannot be strictly improved upon, and are thus optimal in a
much stronger sense.

1.1 Unbeatability

In benign failure models it is typically possible to define the
behaviour of the environment in amanner that is independent
of the protocol, in terms of a pair α = (v, F) consisting of a
vector v of initial values and a failure pattern F that specifies
when and how processes crash (a formal definition is given
in Sect. 3). A failure model F is identified with a set of
(possible) failure patterns. For ease of exposition, we will
think of such a pair α = (v, F) as a particular adversary. In
a synchronous environment, a deterministic protocol P and
an adversary α uniquely define a run r = P[α]. With this
terminology, we can compare the performance of different
decision protocols (later we deal with stopping ones) that
solve a particular task in a given context γ = (Vn,F), where
Vn is a set of possible vectors of initial values andF is a failure
model. A decision protocol Q dominates a protocol P in γ ,
denoted by Q �γ P if, for all adversaries α = (v, F) in the
context γ (namely, v ∈ Vn and F ∈ F) and every process i , if
i decides in P[α] at time mi , then i decides in Q[α] at some
time m′

i ≤ mi . Moreover, we say that Q strictly dominates
P if Q �γ P and P/�γ Q; i.e., Q dominates P and for some

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00446-021-00417-3&domain=pdf

124 A. Castañeda et al.

adversary α in γ there exists a process i that decides in Q[α]
strictly before it does so in P[α].

In the crash failure model, the early-stopping protocols of
[7] strictly dominate the original protocols of [22], in which
decisions are always performed at time t + 1. Nevertheless,
these early stopping protocols may not be optimal solutions
to consensus. Following [18], we call a protocol P solving
a decision task S in a context γ all-case optimal if it domi-
nates every protocol P ′ that solves S in γ . Dwork andMoses
presented all-case optimal solutions to the simultaneous vari-
ant of consensus [10], in which all decisions are required to
be made at the same time. For the standard eventual variant
of consensus, in which decisions are not required to occur
simultaneously, Moses and Tuttle showed that no all-case
optimal solution exists [21]. Consequently, Halpern, Moses
and Waarts in [17] initiated the study of a natural notion of
optimality that is achievable by eventual consensus proto-
cols:

Definition 1 (Unbeatability [17]1)Aprotocol P is anunbeat-
able solution to a decision task S in a context γ if P solves S
in γ and no protocol Q solving S in γ strictly dominates P .

In [17], Halpern, Moses and Waarts presented a two-step
transformation that, given a binary consensus protocol P
defines an unbeatable protocol Q P that dominates P . This
transformation and the resulting protocols are based on a
notion of continual common knowledge that is computable,
but not efficiently: in the resulting protocol, each process
executes exponential time (PSPACE) local computations in
every round. Their transformation is not applied in [17] to
an actual protocol. As an example of an unbeatable protocol,
they present a particular protocol, called P0opt, and argue that
it is unbeatable in the crash failure model. Unfortunately, as
we will show, P0opt is in fact beatable. This does not refute
the general analysis and transformation defined in [17]; they
remain correct. Rather, the fault is in an unsound step in the
proof of optimality of P0opt (Theorem 6.2 of [17]), in which
an inductive step is not explicitly detailed, and does not hold.

1.2 Contributions

The main contributions of this paper are:

1. A knowledge-based analysis is applied to the classic
binary consensus problem, and is shown to yield unbeat-
able solutions that are optimal in a much stronger sense
than all previous solutions. Considerably simpler and

1 All-case optimal protocols are called “optimal in all runs” in [10].
They are termed “optimum” in [17], while unbeatable protocols are
simply called “optimal” there. We prefer the term unbeatable because
“optimal” is used very broadly, and inconsistently, in the literature.

more intuitive than the framework used in [17], it illus-
trates how the knowledge-based approach can yield a
structuredmethodology for the derivation of efficient pro-
tocols.

2. Opt0, the first explicit unbeatable protocol for non-
uniform consensus (only correct processes are required
to reach agreement) is presented. It is computationally
efficient, and its unbeatability is established by way of a
succinct proof. Moreover, Opt0 is shown to strictly dom-
inate the P0opt protocol from [17], proving that the latter
is in fact beatable.

3. An analysis of uniform consensus (in which all decisions,
including those made by processes that later crash, must
be in agreement) gives rise to u − Opt0, the first explicit
unbeatable protocol for UniformConsensus. The analysis
used in the design of u − Opt0 sheds light on the inher-
ent difference and similarities between the uniform and
nonuniform variants of consensus in this model.

4. We identify the notion of a hidden path as being crucial
to decide in the consensus task. If a process identifies that
no hidden path exists, then it can decide. In the fastest
early-stopping protocols preceeding this work, a process
decides after the first round in which it does not detect
a new failure. Our unbeatable protocols, in which a pro-
cess decides when it detects that no hidden path exists,
can in some cases stop after a small constant number of
rounds, compared to t + 1 rounds required by the best
early stopping protocols in the literature.

For ease of exposition and analysis, all of our protocols are
full-information, i.e., every process sends all the information
it is aware of, in every round. However, in fact, they can all be
efficiently implemented in such a way that the total number
of bits that any given process sends to any other process
throughout an execution is O(n log n), in the worst case.

Similarly, for simplicity, we focus first on decision pro-
tocols, namely, protocols that only specify when a process
decides. Thus, formally, in our algorithms correct processes
run forever.However, in all our solutions processes can safely
stop in at most min(f + 2, t+ 1) rounds where f denotes the
actual number of failures in an execution.

1.3 Roadmap

The rest of the paper is structured as follows. Section 2
first sketches the intuition behind our knowledge-based
analysis for deriving unbeatable consensus protocols. Sec-
tion 3 reviews the definitions of the synchronous crash-
failure model and of knowledge in this model. Section 4
presents Opt0, our unbeatable consensus protocol, proves
its unbeatability, and shows that it beats the protocol P0opt
of [17]. Section 5 studies Uniform Consensus, and derives
u − Opt0, an unbeatable protocol in which processes decide

123

Unbeatable consensus 125

in atmostmin(f+2, t+1) rounds. Then, Sect. 6 shows that all
our protocol can be efficiently implemented and that in each
of them a process can stop in at most min(f +2, t+1) rounds.
Section 7 introduces an alternative notion of unbeatability
that is incomparable to the usual one, and shows that all our
algorithms are unbeatable with respect to this notion as well.
Finally, Sect. 8 concludes with a final discussion. For ease of
exposition, some proofs are presented in the Appendix.

2 Intuition

We start with a discussion of the intuition behind our unbeat-
able consensus protocols. In the standard version of binary
consensus, every process i starts with an initial value vi ∈
{0, 1}, and the following properties must hold in every run r :
(Nonuniform) Consensus

• Decision: Every correct process must decide on some
value,

• Validity: If a correct process decides v, then v is the
input of at least one process, and

• Agreement: All correct processes decide on the same
value.

The connection between knowledge and distributed com-
puting was proposed in [16] and has been used in the analysis
of a variety of problems, including consensus (see [11]
for more details and references). In this paper, we employ
simpler techniques to perform a more direct knowledge-
based analysis. Our approach is based on a simple principle
recently formulated by Moses in [20], called the knowledge
of preconditions principle (KoP), which captures an essen-
tial connection between knowledge and action in distributed
and multi-agent systems. Roughly speaking, the KoP prin-
ciple says that if C is a necessary condition for an action α

to be performed by process i , then Ki (C)—i knowing C—
is a necessary condition for i performing α. E.g., it is not
enough for a client to have positive credit in order to receive
cash from an ATM; the ATM must know that the client has
positive credit.

Problem specifications typically state or imply a variety
of necessary conditions. In the crash failure model studied
in this paper, informally, we will say that a process is active
at time m in a given run, if it does not crash before time m.
For v ∈ {0, 1}, we denote by decidei (v) the action of i
deciding v, and use v̄ as shorthand for 1 − v.

Lemma 1 Consensus implies the following necessary condi-
tions for decidei (v) in the crash failure model:

(a) “at least one processes had initial value v” (we denote
this by ∃v), and

(b) “no currently active process has decided, or is currently
deciding, v̄” (denoted by none_decided(v̄)).

Both parts follow from observing that if i decides v at a
point where either (a) or (b) does not hold, then the execution
can be extended to a run inwhich i is correct (does not crash),
as well as another j for (b), and this run violates Validity for
(a) or Agreement for (b).

Given Lemma 1, KoP implies that both Ki∃v and
Kinone_decided(v̄) are also necessary conditions for the
action decidei (v) to be performed. In this paper, we
will explore how this insight can be exploited in order
to design efficient consensus protocols. Indeed, our first
unbeatable protocol will be one in which, roughly speak-
ing, the rule for decidei (0) will be Ki∃0, and the rule for
decidei (1) will be Kinone_decided(0). As we will show,
if the rule for decidei (0) is Ki∃0, then none_decided(0)
reduces to the fact not_known(∃0), which is true at a
given time if K j∃0 holds for no currently-active pro-
cess j . Thus, Kinone_decided(0)—our candidate rule for
deciding 1—then becomes Kinot_known(∃0). While Ki∃0
involves the knowledge a process has about initial values,
Kinot_known(∃0) is concerned with i’s knowledge about
the knowledge of others.

Converting the above description into an actual protocol
essentially amounts to providing concrete tests for when
these knowledge conditions hold. It is straightforward to
show (and quite intuitive) that in a full-information proto-
col Ki∃0 holds exactly if there is a message chain from some
process j whose initial value is 0, to process i . To determine
that Kinot_known(∃0), a process must have proof that no
such chain, leading to any process i ′ can exist at the current
time. Our technical analysis identifies a notion of a hidden
path with respect to i at a time m, which implies that a
message chain could potentially be communicating a value
unbeknownst to i at time m. It is shown that hidden paths
are key to evaluating whether Kinot_known(∃0) holds. We
will review the formal definition of knowledge in the next
section, in order to turn this into a rigorous condition.

It turns out that hidden paths are key to obtaining addi-
tional unbeatable protocols in the crash failure model. We
present an unbeatable protocol for the uniform variant of con-
sensus [3,9,15,19,23,24] in which we replace the Agreement
condition of consensus by:

Uniform Agreement: The processes that decide in a
given run must all decide on the same value.

This forces correct processes and faulty ones to decide in
a consistent manner. Requiring uniformity makes sense only
in a setting where failures are benign, and all processes that
decide do so according to the protocol. Uniformity may be
desirablewhen elements outside the systemcan observe deci-

123

126 A. Castañeda et al.

sions, as in distributed databases when decisions correspond
to commitments to values.

3 Preliminary Definitions

3.1 Model of Computation

Our model of computation is the standard synchronous
message-passing model with benign crash failures. A sys-
tem has n ≥ 2 processes, denoted Procs = {1, . . . , n}. Each
pair of processes is connected by a two-way communica-
tion link, and each message is tagged with the identity of the
sender. Processes share a discrete global clock that starts out
at time 0 and advances by increments of one. Communication
in the system proceeds in a sequence of synchronous rounds,
with round m taking place between time m − 1 and time m.
Each process starts in some initial state at time 0, usually
with an input value of some kind. In every round, each pro-
cess first performs a local computation, and performs local
actions (e.g. deciding on a value), then it sends a set of mes-
sages to other processes, and finally receivesmessages sent to
it by other processes during the same round. We consider the
local computations and sending actions of round m as being
performed at time m − 1, and the messages are received at
time m.

A faulty process fails by crashing in some round m ≥ 1.
It behaves correctly in the first m − 1 rounds and sends no
messages from round m +1 on. During its crashing round m,
the process can crash at any point during that round, hence
it may succeed in sending only a subset of the messages
in round m; the subset might be empty (e.g. if the process
crashes during its local computation). At most 1 ≤ t ≤ n −1
processes fail in any given execution. The actual number of
failures in a given execution is denoted 0 ≤ f ≤ t.

It is convenient to consider the state and behaviour of pro-
cesses at different (process,time) nodes,where anode is a pair
〈i, m〉 referring to process i at time m. A failure pattern is a
tuple (F, fail) that describes how processes fail in an execu-
tion. It has a layered graph F whose vertices are nodes 〈i, m〉
for i ∈ Procs and m ≥ 0. Such a vertex denotes process i
and time m. An edge has the form (〈i, m − 1〉, 〈 j, m〉) and
it denotes the fact that a message sent by i to j in round m
would be delivered successfully. The function fail indicates
the exact time a faulty process crashes and whether it com-
pletes all its local actions before crashing (hence possibly
making a decision). More specifically, for a faulty process i ,
fail(i) is a pair (m, b) meaning that i crashes at time m, and
it either executes all its local actions before crashing, when
b = true, or executes no local action at all before crashing,
when b = false. For every correct process i , fail(i) = ⊥. F
and fail must be consistent: if fail(i) = (m, b), then in F, i
sends all its messages in the first m − 1 rounds, sends some

of its messages in round m and sends no messages in the next
rounds.

Let Crash(t) denote the set of failure patterns in which all
failures are crash failures, and no more than t crash failures
occur.An input vector describes the initial values that the pro-
cesses receive in an execution. The only inputs we consider
are initial values that processes obtain at time 0. An input
vector is thus a tuple v = (v1, . . . , vn) where v j is the input
to (or, alternatively, the initial value of) process j . We think
of the input vector and the failure pattern as being determined
by an external scheduler, and thus a pair α = (v, (F, fail)) is
called an adversary.

A protocol describes what messages a process sends and
what decisions it takes (if it takes a decision), as a determin-
istic function of its local state at the start of a round and the
messages received in the previous round. We assume that
a protocol P has access to the values of n and t, typically
passed to P as parameters.

A run is a description of an infinite behaviour of the
system. Given a run r and a time m, we denote by ri (m)

the local state of process i at time m in r , namely, the
state of the process after receiving all messages sent to it
in round m, and performing the local computation (which
may include taking a decision) and sending its messages (if
there are any) corresponding to round m + 1; if m = 0,
the process receives a single message with its input in a
fictitious round 0. The global state at time m is defined to
be r(m) = 〈r1(m), r2(m), . . . , rn(m)〉. A protocol P and
an adversary α uniquely determine a run, and we write
r = P[α].

Since we restrict our attention to benign failure mo-dels
and focus on decision times and solvability in this paper, it is
sufficient to consider full-information protocols [4] (fip’s for
short), defined below. Informally speaking, every process in a
full-information protocol sends all information it has seen so
far, in every round. There is a convenientway to consider such
protocols in our setting. With an adversary α = (v, (F, fail)),
we associate a communication graph Gα , consisting of the
graph F extended by labelling the initial nodes 〈 j, 0〉with the
initial statesv j according tov. Every node 〈i, m〉 is associated
with a subgraph Gα(i, m) of Gα , which we think of as i’s
view at 〈i, m〉. Intuitively, this graph will represent all nodes
〈 j, �〉 from which 〈i, m〉 has heard, and the initial values it
has seen. Formally, Gα(i, m) is defined by induction on m.
Gα(i, 0) consists of the node 〈i, 0〉, labelled by the initial
value vi . Assume that Gα(1, m − 1), . . . ,Gα(n, m − 1) have
been defined, and let J ⊆ Procs be the set of processes j
such that j = i or e j = (〈 j, m − 1〉, 〈i, m〉) is an edge of F.
Namely, J consists of the processes i receivesmessages from
at the end of round m. Then, Gα(i, m) consists of the node
〈i, m〉, the union of all graphs Gα(j, m − 1) with j ∈ J , and
the edges e j = (〈 j, m − 1〉, 〈i, m〉) for all j ∈ J . We say
that 〈 j, �〉 is seen by 〈i, m〉 if 〈 j, �〉 is a node of Gα(i, m).

123

Unbeatable consensus 127

Note that this occurs exactly if the failure pattern F allows a
(Lamport) message chain from 〈 j, �〉 to 〈i, m〉.

A full-information protocol P is one in which at every
node 〈i, m〉 of a run r = P[α] with adversary α =
(v, (F, fail)), the process i constructs Gα(i, m) after receiv-
ing its round m nodes, and then sends Gα(i, m) to all other
processes in round m + 1. Moreover, the protocol P spec-
ifies what decisions i should take (if there is one) at 〈i, m〉
based on Gα(i, m); such decision is taken in round m + 1.
Full-information protocols thus differ only in the decisions
taken at the nodes. Let d(i, m) be status of i’s decision at
time m, either ‘⊥’ if it is undecided, or a concrete value ‘v’.
We assume that decisions are irrevocable; namely, once set
to a non-⊥ value, the decision of a process is never changed:
if d(i, m) �= ⊥, then d(i, m′) = d(i, m), for every m′ > m.
For the smallest timem such that d(i, m) �= ⊥, wemust have
that, according to α, either i does not crash at time m (i.e.,
fail(i) = ⊥) or it crashes at time m but it completes all its
local actions before crashing (i.e., fail(i) = (m, true)). Thus,
in a run r = P[α], we define ri (m) = 〈d(i, m),Gα(i, m)〉 if i
does not crash at time m, while if i crashes at time m′ ≤ m,
ri (m) = 〈d(i, m′),Gα(i, m′),�〉 where � indicates that i is
crashed at time m′.

Finally, we formally define the notion of a process being
active used in Sect. 2: given an adversary α = (v, (F, fail)), a
process i is active at timem in the run r = P[α] of a protocol
P , if fail(i) is ⊥ or (m, true).

3.2 Knowledge

Our construction of unbeatable protocols will be assisted and
guided by a knowledge-based analysis, in the spirit of [11,
16]. Runs are dynamic objects, changing from one time point
to the next. E.g., at one point process i may be undecided,
while at the next it may decide on a value. Similarly, the set
of initial values that i knows about, or has seen, may change
over time. In general, whether a process “knows” something
at a given point can depend on what is true in other runs in
which the process has the same information, i.e., runs that are
indistinguishable to i . We will therefore consider the truth of
facts at points (r , m)—time m in run r , with respect to a set
of runs R, which we call a system. We will be interested in
systems of the form RP = R(P, γ)where P is a protocol and
γ = γ (Vn,F) is a context, namely, the set of all adversaries
that assign initial values from V and failures according to F.

We will write (R, r , m) |
 A to state that fact A holds,
or is satisfied, at (r , m) in the system R. The truth of some
facts can be defined directly. For example, we define the fact
∃v to hold at the point (r , m) in R if some process has initial
value v in (r , 0). We say that (satisfaction of) a fact A iswell-
defined in R if for every point (r , m) with r ∈ R and m ≥ 0,
it can be determined whether or not (R, r , m) |
 A from the
global state r(m). Fact ∃v is thus well defined. Moreover,

any boolean combination of well-defined facts is also well
defined. We will write Ki A to denote that process i knows
A, and define:

Definition 2 (Knowledge) Suppose that A is well defined
in R. Define that (R, r , m) |
 Ki A if and only if (R, r ′, m) |

A holds for all r ′ ∈ R with ri (m) = r ′

i (m).

Thus, if A is well defined in R then Definition 2 makes
Ki A well defined in R. Note that what a process knows or
does not know depends on its local state. The definition can
then be applied recursively, to define the truth of K j Ki A etc.

Knowledge has been used to study a variety of problems
in distributed computing. We will make use of the following
fundamental connection between knowledge and actions in
distributed systems. A fact A is a necessary condition for
process i performing action σ (e.g. deciding on an output
value) in R if (R, r , m) |
 A whenever i performs σ at a
point (r , m) of R.

Theorem 1 (Knowledge of Preconditions [20]) Let RP =
R(P, γ) be the set of runs of a deterministic protocol P. If
A is a necessary condition for i performing σ in RP , then so
is Ki A.

4 Unbeatable consensus

We start with the (nonuniform) version of consensus defined
in Sect. 2, and consider the crash failure context γ t

cr =
〈Vn,Crash(t)〉, where V = {0, 1}. Every protocol P in this
setting determines a system RP = R(P, γ t

cr).

4.1 Deriving an unbeatable protocol

Recall that Lemma 1 in Sect. 2 establishes necessary condi-
tions for decision in consensus (Appendix A contains a proof
of the lemma). Based onLemma 1 andTheorem1,we obtain:

Lemma 2 Let P be a consensus protocol for γ t
cr and let RP =

R(P, γ t
cr). Then both Ki∃v and Kinone_decided(v̄) are

necessary conditions for decidei (v) in RP .

An analysis of knowledge for fips in the crash failure
model was first performed by Dwork and Moses in [10].
The following result is an immediate consequence of that
analysis. Under the full-information protocol, processes that
survive until time t+1 obtain the same knowledge about ∃v:
Lemma 3 (Dwork and Moses [10]) Let P be a fip in γ t

cr and
let r ∈ RP = R(P, γ t

cr). For all processes i, j , (RP , r , t +
1) |
 Ki∃v iff (RP , r , t + 1) |
 K j∃v.

While Lemma 3 is given and proved in [10], for com-
pleteness we reprove it in Appendix A using the notation
and machinery of this paper.

123

128 A. Castañeda et al.

Of course, a process that does not know ∃0must itself have
an initial value of 1. Hence, based on Lemma 3, it is natu-
ral to design a fip-based consensus protocol that performs
decidei (0) at time t + 1 if Ki∃0, and otherwise performs
decidei (1). (In the very first consensus protocols, all deci-
sions are performed at time t + 1 [22].) Indeed, one can use
Lemma 3 to obtain a strictly better protocol, in which deci-
sions on 0 are performed sooner:
Protocol P0 (for an undecided process i at time m):

if Ki ∃0 then decidei (0)
elseif m = t + 1 then decidei (1)

Notice that in a fip consensus protocol, it is only necessary
to describe the rules for decidei (0) and decidei (1), since
in every round a process sends its complete local state to
all processes. Since Ki∃0 is a necessary condition for the
action decidei (0), the protocol P0 decides on 0 as soon as
any consensus protocol can. In the early 80’sDolev suggested
a closely related protocol B (standing for Beep) for γ t

cr, in
which processes decide 0 and broadcast the existence of a 0
when they see a 0, and decide 1 at t + 1 otherwise [6]; for
all adversaries, it performs the same decisions at the same
times as P0. Halpern, Moses and Waarts show in [17] that
for every consensus protocol P in γ t

cr there is an unbeatable
consensus protocol Q dominating P . Our immediate goal is
to obtain an unbeatable consensus protocol dominating P0.
To this end, we make use of the following.

Lemma 4 Let Q be a consensus protocol. If Q � P0,
then decidei (0) is performed in Q exactly when Ki∃0 first
holds, for every process i .

Proof Assume that Q � P0 solves consensus; w.l.o.g., Q is
a fip as well. We prove the claim for all processes i and
adversaries α, by induction on the time m at which Ki∃0
first holds in Q[α] (and, equally, in P0[α]).

Base (m = 0): As i decides 0 at time 0 in P0[α], by
Lemma 2 we have Ki∃0 at time 0 in P0[α] (and so also in
Q[α]). Since process i at time 0 knows no initial value but
its own, it follows that i is assigned an initial value of 0 by α.
Hence, Ki∃1 does not hold at time 0.ByLemma2, i therefore
does not decide 1 at time 0 in Q[α]. Since i decides at time 0
in P0[α], it must decide at time 0 in Q[α] as well, and so
decides 0, as required.

Inductive step (m > 0): Assume that the claim holds for
all times < m. Recall that m is the first time at which Ki∃0
holds. In a fip, this can only happen if Ki∃0 does not hold
at time m′ < m and i receives at time m a message with
a 0 from some process j that is active at time m − 1. Thus,
K j∃0 holds at time m −1, and by the induction hypothesis, j
decides 0 when K j∃0 first holds in Q[α] —denote this time

by m′; as K j∃0 holds at time m − 1, we have m′ ≤ m − 1.
Observe that in γ t

cr, if i receives amessage from j in roundm,
then i cannot know that j is faulty at time m; more precisely,
denoting by β the adversary that never crashes i nor j at all,
and that otherwise agrees with α (this is a legal adversary, as
is specifies no more than t crash failures), we have in the run
r ′ = Q[β] that 1) r ′

i (m) = ri (m), 2) r ′
j (m

′) = r j (m′), and
3) neither i nor j fail. Since Q satisfies Agreement, i cannot
decide 1 during Q[β], and therefore cannot decide 1 at or
before time m during Q[α]. Moreover, by Lemma 2, Ki∃0
is a precondition for process i deciding 0, and so i cannot
decide 0 before time m during Q[α]. Since Q dominates P0,
we have that i must decide by time m in Q[α], and therefore
it decides 0 at m in Q[α]. ��

We define (R, r , m) |
 not_known(∃0) to hold iff
(R, r , m) �|
 K j∃0 holds for every process j . 2 We can
now formalize the discussion in Sect. 2, showing that if
decisions on 0 are performed precisely when Ki∃0 first
holds, then none_decided(0) reduces to not_known(∃0).
The proof of Lemma5 (inAppendixA) is fairly immediate: If
(RP , r , m) �|
 Kinot_known(∃0) then there is a run r ′ of RP

such that both ri (m) = r ′
i (m) and (RP , r ′, m) |
 K j∃0 for

some correct process j ; therefore, process j decides 0 in r ′.
The other direction follows directly from the decision rule
for 0.

Lemma 5 Let P be a fip in which decidei (0) is performed
exactly when Ki∃0 first holds, and let RP = R(P, γ t

cr). Then,
for every process i , it is the case that

(RP , r , m) |
 Kinone_decided(0)

iff

(RP , r , m) |
 Kinot_known(∃0),

for all r ∈ RP and m ≥ 0.

We can now define a fip consensus protocol in which 0 is
decided as soon as its necessary condition Ki∃0 holds, and 1
is decided as soon as possible, given the rule for deciding 0:

Protocol Opt0 (for an undecided process i at time m):

if Ki ∃0 then decidei (0)
elseif Kinot_known(∃0) then decidei (1)

We can show that Opt0 solves consensus and is, indeed,
an unbeatable protocol.

2 Notice that if j crashes before time m in r then (R, r , m) �|
 K j ∃0 is
guaranteed, since the crashed local state � for j appears, in particular,
in runs in which ∃0 is not true since all initial values are 1.

123

Unbeatable consensus 129

Lemma 6 Let P be a fip in γ t
cr and let r ∈ RP = R(P, γ t

cr).
For every process i , it is the case that if

(RP , r , t + 1) �|
 Ki∃0,

then

(RP , r , t + 1) |
 Kinot_known(∃0).

Proof By Lemma 3, we have that ¬Ki∃0 at time t + 1
implies not_known(∃0) at that time; by definition of knowl-
edge, we therefore have that Ki (¬Ki∃0 ∧ m = t + 1)
implies Kinot_known(∃0). Since every process i knows
both the clock value and the bound t, we therefore have that
Ki (¬Ki∃0) at time t + 1 implies that Kinot_known(∃0) at
that time. Finally, by the definition of knowledgewe have that
Ki (¬Ki∃0) holds iff¬Ki∃0 holds, and the proof is complete.

��
Theorem 2 Opt0 solves consensus in γ t

cr.

Proof Consider any run r of Opt0 and let i be a nonfaulty
process.

Decision: By definition of Opt0, for any process that is active
at time t + 1, if i has not decided 0 by that time, we have
¬Ki∃0 at that time. Therefore, by Lemma 6, we have that
Kinot_known(∃0) at that time and so i decides upon 1 if it
is undecided. Therefore, all processes that are active at time
t + 1, and in particular all nonfaulty processes, decide by
that time at the latest, and in particular decide at some point
throughout the run, as required.

Henceforth, let m be the decision time of i and let v be
the value upon which i decides.

Validity: If v = 0, then Ki∃0 at m; thus, ∃0 as required.
Otherwise, Ki∃0 does not hold at m; therefore, vi = 1, and
so ∃1 as required.
Agreement: It is enough to show that if v = 1, then no
correct process ever decides 0 in the current run. Indeed, if
any nonfaulty process j decided 0 at some time m′ < m,
then i would have received a message with a 0 from j at
m′ + 1 ≤ m, and so we would have Ki∃0 at m. To complete
the proof, it is enough to show that no process decides 0 at
any timem′ ≥ m; this follows by an easy inductive argument,
using the fact that not_known(∃0) at any time m′′ implies
not_known(∃0) at m′′ + 1. ��
Theorem 3 Opt0 is an unbeatable consensus protocol in γ t

cr.

Proof Correctness is shown in Theorem 2. We show that
for every consensus protocol Q � Opt0, we also have
Opt0 � Q. Let, therefore, Q be a consensus protocol s.t.
Q � Opt0; w.l.o.g., Q is a fip.

We first claim that Opt0 � P0. Indeed, whenever P0

decides upon 0, so does Opt0; let therefore i be a process
deciding upon 1 in P0; by definition of P0, this decision is
made at timem = t+1, and furthermore,¬Ki∃0 at that time.
By Lemma 6, we therefore have that Kinot_known(∃0) at
time, and so, i decides upon 1 in Opt0 at that time if it has
not already decided.

By transitivity of domination, we thus have that Q � P0.
By Lemma 4, we therefore have that decidei (0) is performed
in Q exactly when Ki∃0 first holds; therefore, no decision on
0 is made in Q before Opt0. By Lemmas 2 and 5, we there-
fore have that Kinot_known(∃0) is a necessary condition for
decidei (1) in RQ = R(Q, γ t

cr). Therefore, no decision on 1
is made in Q before Opt0. Therefore Opt0 � Q, as required,
and the proof is complete. ��

4.2 Testing for knowing that nobody knows

Opt0 is not a standard protocol, because its actions depend
on tests for process i’s knowledge. (It is a knowled-ge-based
program in the sense of [11].) In order to turn it into a stan-
dard protocol, we need to replace these by explicit tests on
the processes’ local states. The rule for decidei (0) is easy to
implement. By Lemma 3(a), Ki∃0 holds exactly if i’s local
state contains a time 0 node that is labelled with value 0.
In the second case, the rule Kinot_known(∃0) for perform-
ing decidei (1) holds when i knows that no active process
knows ∃0, and we now characterize when this is true. A
central role in our analysis will be played by process i’s
knowledge about the contents of various nodes in the com-
munication graph. Recall that local states ri (m) in fip’s are
communication graphs of the form Gα(i, m); we abuse nota-
tion and write θ ∈ ri (m) (respectively, (θ, θ ′) ∈ ri (m)) if θ

is a node of Gα(i, m) = ri (m) (respectively, if (θ, θ ′) is an
edge of Gα(i, m) = ri (m)); in this case, we say that θ is seen
by 〈i, m〉. We now make the following definition:

Definition 3 (Revealed) Let r ∈ RP = R(P, γ t
cr) for a fip

protocol P . We say that node 〈 j ′,m′〉 is revealed to 〈i,m〉
in r if either (1) 〈 j ′, m′〉 ∈ ri (m), or (2) for some
process i ′ such that 〈i ′, m′〉 ∈ ri (m) it is the case that(〈 j ′, m′ − 1〉, 〈i ′, m′〉) /∈ ri (m). We say that time m′ is
revealed to 〈i,m〉 in r if 〈 j ′, m′〉 is revealed to 〈i, m〉 for
all processes j ′.

Intuitively, if node 〈 j ′, m′〉 is revealed to 〈i, m〉 then i
has proof at time m that 〈 j ′, m′〉 can not carry information
that is not known at 〈i, m〉 but may be known at another
node 〈 j, m〉 at the same time. This is because either i sees
〈 j ′, m′〉 at that point—this is part (1)—or i has proof that j ′
crashed before time m′, and so its state there was �, and j ′
did not send anymessages at or after timem′. It is very simple
and straightforward from the definition to determine which
nodes are revealed to 〈i, m〉, based on ri (m) = Gα(i, m).

123

130 A. Castañeda et al.

Observe that if a node 〈 j ′, m′〉 is revealed to 〈i, m〉, then i
knows at m what message could have been sent at 〈 j ′, m′〉:
If 〈 j ′, m′〉 ∈ ri (m) then r j ′(m′) is a subgraph of ri (m), while
if

(〈 j ′, m′ − 1〉, 〈i ′, m′〉) /∈ ri (m) for some node 〈i ′, m′〉 ∈
ri (m), then j ′ crashed before time m′ in r , and so it sends
no messages at time m′. Whether and when a node 〈 j ′, m′〉
is revealed to i depends crucially on the failure pattern. If i
receives a message from j ′ in round m′ + 1, then 〈 j ′, m′〉 is
immediately revealed to 〈i, m′ + 1〉. If this message is not
received by 〈i, m′ + 1〉, then 〈 j ′, m′ + 1〉 — the successor
of 〈 j ′, m′〉 — becomes revealed (as being crashed, i.e., in
state�) to 〈i, m′ + 1〉. But in general 〈 j ′, m′〉 can be revealed
to i at a much later time than m′ + 1, (A simple instance of
this is when Ki∃0 first becomes true at a time m > 1; in this
case a node 〈 j, 0〉with v j = 0 is first revealed to i at timem.)

Suppose that some time k ≤ m is revealed to 〈i, m〉. Then,
in a precise sense, process i at time m has access to all of the
information that existed in the system at time k (in the hands
of processes that had not crashed by then). In particular, if
this information does not record an initial value of 0, then
nobody can know ∃0 at or after time k. In particular, i has
proof that nobody knows ∃0 at time m. We now formalize
this intuition and show that revealed nodes can be used to
determine when a process can know not_known(∃0).

Lemma 7 Let P be a fip and let r ∈ RP = R(P, γ t
cr).

For every node 〈i, m〉, it is the case that (RP , r , m) |

Kinot_known(∃0) exactly if both (1) (RP , r , m) �|
 Ki∃0
and (2) some time k ≤ m is revealed to 〈i, m〉 in r .

Proof We first claim that (RP , r , m) |
 not_known(∃0) iff
for every 0 ≤ k ≤ m, there exists a process jk s.t. K jk ∃0 at
time k in r —we call such j0, . . . , jm a 0-path for time m in
r ; the proof is similar to (and simpler than) that of Lemma 20
in Appendix A, and is left to the reader.

Assume first that some time k ≤ m is revealed to 〈i, m〉
in r . As (RP , r , m) �|
 Ki∃0, we thus have that no
time-k node j satisfies K j∃0; therefore, no 0-path exists
for time m in r , and so (RP , r , m) |
 not_known(∃0).
Note that by definition of knowledge, time k is revealed
to 〈i, m〉 in r iff (RP , r , m) |
 Ki (time kis revealed to
〈i, m〉 in the current run). Therefore, we have that time k
being revealed to 〈i, m〉 implies not only (RP , r , m) |

not_known(∃0), but also (RP , r , m) |
 Kinot_known(∃0),
as required.

Assume now that no time k ≤ m is revealed to 〈i, m〉, i.e.,
that for every k ≤ m, there exists a time-k node 〈 jk, k〉 that
is not revealed to 〈i, m〉 in r—in Subsect. 4.4, we call such
j0, . . . , jm a hidden path w.r.t. 〈i, m〉 in r . We construct a run
r ′ ∈ RP s.t. r ′

i (m) = ri (m), in which j0, . . . , jm constitutes a
0-path for time m—see Fig. 1 in Subsect. 4.4. The adversary
in r ′ meets the following conditions, and otherwise coincides
with that of r :

• v j0 = 0.
• For every k < m, the node 〈 jk, k〉 crashes, successfully
sending a message solely to 〈 jk+1, k + 1〉.

• 〈 jm, m〉 is nonfaulty.

It is easy to verify that r ′
i (m) = ri (m), that no more crashes

occur in r ′ than in r , and that j0, . . . , jm indeed is a 0-path
for time m in r . As (RP , r ′, m) �|
 not_known(∃0), and
as r ′

i (m) = ri (m), we therefore have that (RP , r , m) �|

Kinot_known(∃0), as required. ��

Based on Lemma 7, we obtain a standard unbea-table con-
sensus protocol for γ t

cr that implements Opt0:

Protocol Opt std0 (for an undecided proc. i at time m):

if i has seen a time-0 node with initial value 0
then decidei (0)

elseif some time k ≤ m is revealed to 〈i, m〉
then decidei (1)

In addition to facilitating an efficient implementation, the
formulation of Opt std0 also makes the worst-case decision
time of Opt std0 and Opt0 apparent.

Lemma 8 In Opt std0 (and thus also Opt0), all decisions are
made by time f + 1 at the latest.

Proof Let i be an undecided node at time m in Opt std0 ; it is
enough to show that m ≤ f . As i is undecided, by definition
of Opt std0 , for every 0 ≤ k < m, there exists a process jk s.t.
〈 jk, k〉 is not revealed to 〈i, m〉. We first note that all of the
nodes jk are faulty; indeed, as 〈 jk, k〉 is not revealed to 〈i, m〉,
and as k < m, we have that 〈i, k + 1〉 receives no message
from 〈 jk, k〉. We further note that all jk are distinct; indeed,
for every k < k′ < m, we have (once again since 〈 jk, k〉
is not revealed to 〈i, m〉) that (〈 jk, k′ − 1〉, 〈i, k′〉) /∈ ri (m)

while 〈i, k′〉 ∈ ri (m), and so by definition 〈 jk, k′〉 is revealed
to 〈i, m〉.We conclude that j0, . . . , jm−1 arem distinct faulty
nodes, and so m ≤ f and the proof is complete. ��

4.3 ComparingOpt0 to previous protocols

It is interesting to compare Opt0 with efficient early-stopping
consensus protocols [3,7,13,17]. Let’s say that the sender
set repeats at 〈i, m〉 in run r if i hears from the same
set of processes in rounds m − 1 and m. If this happens
then, for every 〈 j, m − 1〉 /∈ ri (m), we are guaranteed that
(〈 j, m − 2〉, 〈i, m − 1〉) /∈ ri (m). Thus, all nodes at time
(m − 1) are revealed to 〈i, m〉. Indeed, in a run in which f
failures actually occur, the sender set will repeat for every
correct process by time f +1 at the latest. Efficient early stop-
ping protocols typically decide when the sender set repeats.

123

Unbeatable consensus 131

Indeed, the protocol P0opt that was claimed by [17] to be
unbeatable does so as well, with a slight optimization. Writ-
ing∀1 to stand for “all initial values are 1”, P0opt is described
as follows:
Protocol P0opt (for an undec. proc. i at time m) [17] :

if Ki ∃0
then decidei (0)

elseif Ki ∀1 or (m ≥ 2 and the sender set repeats)
then decidei (1)

Protocols Opt0 and P0opt differ only in the rule for decid-
ing 1.But Opt0 strictly beats P0opt, and sometimes by awide
margin. If t = �(n) then it can decide faster by a ratio of
�(n). Indeed, we can show:

Lemma 9 If 3 ≤ t ≤ n − 2, then Opt0 strictly domi-
nates P0opt. Moreover, there exists an adversary for which
decidei (1) is performed after 3 rounds in Opt0, and after
t + 1 rounds in P0opt.

Proof First notice that Opt0 dominates P0opt, since Ki∀1 is
true iff time 0 is revealed to i , and if i’s sender set repeats in
round m, then time m − 1 is revealed to i at time m. Hence,
for every adversary, processes decide in Opt0 at least as soon
as they do in P0opt. We now show an adversary for which
the decisions are made strictly earlier in Opt0 than in P0opt;
moreover, this adversary meets the conditions of the second
clause of the Lemma 9.

Denote the processes by Procs = {1, 2, . . . , n}. Let α be
defined as follows. All initial values in α are 1. In round 1,
only process 1 fails, and it is silent: it crashes without send-
ing anymessages. In round 2 two processes crash—process 2
and process 3, with process 2 sending only to process n, and
process 3 sending to everyone except process n. No process
fails in round 3, and, in each of the rounds m = 4, . . . , t,
process m crashes without sending any messages. Since pre-
cisely t processes fail in α we have that α ∈ Crash(t).

Observe that in f i p[α] no correct process ever knows pro-
cess 1’s initial value. In addition, for every correct process,
the first round in which the sender set repeats is round t + 1.
Indeed, every correct process other than n fails to hear from
process m for the first time in round m, for m = 1, . . . , t,
while process n differs slightly, in that it fails to hear from
process 3 in round 2 and fromprocess 2 in round 3. Therefore,
in P0opt[α] all correct processes decide 1 at time t+1, since
round t + 1 is the first one in which their sender set repeats;
no process decides any earlier. Now let us consider when a
process i that is correct according to α decides in Opt0.
By definition, i receives messages in round 3 from both
〈n, 2〉 and 〈n − 1, 2〉. Together, these contain the informa-
tion about nodes 〈2, 1〉, 〈3, 1〉, . . . , 〈n, 1〉. Moreover, node

〈1, 1〉 is revealed to 〈i, 3〉 as well (as being crashed), since
the edge (〈1, 0〉, 〈i, 1〉) is absent from i’s view at 〈i, 3〉. It
follows that time 1 is revealed to 〈i, 3〉, and so i decides 1 at
time 3, after 3 rounds, as claimed. Since 3 < 4 ≤ t + 1, we
have that when the adversary is α, decisions in Opt0 occur
strictly earlier than in P0opt, and we are done. ��

4.4 Hidden paths and agreement

It is instructive to examine the proof of Lemma7 and consider
when an active process i is undecided at 〈i, m〉 in Opt0.
This occurs if both ¬Ki∃0 and, in addition, for every k =
0, . . . , m there is at least one node 〈 jk, k〉 that is not revealed
to 〈i, m〉. We call the sequence of nodes 〈 j0, 0〉, . . . , 〈 jm, m〉
a hidden path w.r.t. 〈i,m〉. Such a hidden path implies that
all processes j0, . . . , jm have crashed. Roughly speaking, ∃0
could be relayed along such a hidden path without i knowing
it (see Fig. 1). More formally, its existence means that there
is a run, indistinguishable at 〈i, m〉 from the current one, in
which v j0 = 0 and this fact is sent from each jk to jk+1 in
every round k + 1 ≤ m. In that run process jm is active at
time m and K jm ∃0, and that is why Kinot_known(∃0) does
not hold. Hidden paths are implicit in many lower bound
proofs for consensus in the crash failure model [7,10], but
they have never before been captured formally.

3. 4 Clearly, hidden paths can relay more than just the
existence of a value of 0. In a protocol inwhich someviewcan
prove that the state is univalent in the sense of Fischer, Lynch
and Paterson [12], a hidden path from a potentially pivotal
state can keep processes from deciding on the complement
value. Our analysis in the remainder of the paper provides
additional cases in which unbeatable consensus is obtained
when hidden paths can be ruled out.

5 Unbeatable uniform consensus

Recall that in the uniform version of consensus, it is required
that any two processes that decide must decide on the same
value, even if one (or both) of them crash soon after deciding.

5.1 Deriving an unbeatable protocol

Under crash failures, a process generally does not know
whether or not it is correct. Indeed, as long as it has not

3 For simplicity, in this example every node seen by 〈i, 3〉 is also seen
by all other nodes in the view of 〈i, 3〉. In other words, there exists
no node 〈 j, m′〉 that is in state according to the information held by
〈i, 3〉, i.e., both 〈 j, m′〉 is seen by 〈i, 3〉, and i has indirectly learnt by
time 3 that j has in fact crashed at m′.
4 In this run, the state of both 〈 j0, 0〉 and 〈 j1, 1〉, according to the
information held by 〈 j3, 3〉, is , as defined in Footnote 3.

123

132 A. Castañeda et al.

i

j0

j1

j2

j3

m :

〈i, 3〉
1

1

1

1

0 1 2 3

(a) All nodes seen (directly
or indirectly) by 〈i, 3〉. The
initial value is shown for all
seen time-0 nodes. Notably,
both ¬Ki∃0 and ¬Ki¬∃0
hold at time m = 3.

i

j0

j1

j2

j3

m :

〈i, 3〉

0 1 2

?

3

(b) The state of each node,
according to the informa-
tion held by 〈i, 3〉:
=seen by all; =seen,

may have crashed;
=revealed, seen by

none; =hidden: may have
been seen by others.3

i

j0

j1

j2

j3

m :

〈i, 3〉
1

0

1

1

1

0 1 2 3

(c) A run that is possi-
ble according to the infor-
mation held by 〈i, 3〉;4 in
this run, Kj3∃0 holds at
time m = 3. Therefore,
¬Kinot known(∃0) at time
m = 3. 〈i, 3〉 is therefore un-
decided in Opt0.

Fig. 1 A hidden path 〈 j0, 0〉, . . . , 〈 j3, 3〉 w.r.t. 〈i, 3〉 implies
¬Kinot_known(∃0) at 3

seen t failures, the process may (for all it knows) crash in the
future. As a result, while Ki∃0 is a necessary condition for
decidei (0) as before, it cannot be a sufficient condition for
decision in anyUniformConsensus protocol. This is because,
with this rule, a process startingwith 0 immediately decides 0,
and may immediately crash. If all other processes have ini-
tial value 1, all other decisions can only be on 1. Of course,
Ki∃0 is still a necessary condition for deciding 0, but it is
not sufficient. Denote by ∃correct(v) the fact “some correct
process knows ∃v”. We show the following:

Lemma 10 Ki∃correct(v) is a necessary condition for i
deciding v in any protocol solving uniform consensus.

Proof Let r be a run of a Uniform Consensus protocol P ,
such that (RP , r , m) �|
 Ki∃correct(v). Thus, there exists a
run r ′ ∈ P[α′] such that ri (m) = r ′

i (m) and (RP , r ′, m) �|

∃correct(v). Consider the adversary β that agrees with α′
up to time m, and in which all active but faulty processes
at (r ′, m) crash at time m without sending any messages.

β ∈ γ t
cr because it has a legal input vector (identical to α′),

and at most t crash failures, as it has the same set of faulty
processes as α′ ∈ γ t

cr. It follows that r ′′ = P[β] is a run
of P . Since β agrees with α′ on the first m rounds, we have
that r ′′

i (m) = r ′
i (m). Nonetheless, no correct process will

ever know ∃v in r ′′, and thus by Validity no correct process
ever decides v in r ′′. By decision, all correct processes thus
decide not on v. By Uniform Agreement, and as t < n (i.e.,
there are correct processes), i cannot decide on v in r ′′, and
thus, as r ′′

i (m) = r ′
i (m) = ri (m), it cannot decide on v in r

at m. ��

Definition 4 For a given run r , we denote by F〈i, m〉 the
number of failures known to 〈i, m〉, i.e., the number of pro-
cesses j �= i from which i does not receive a message in
round m.

As the next lemma shows, there is a direct and simple way
to test whether Ki∃correct(v) holds, based on ri (m):

Lemma 11 Let r ∈ RP = R(P, γ t
cr) , let i be an active pro-

cess at time m in r, and let d � F〈i, m〉. Then (RP , r , m) |

Ki∃correct(v) iff at least one of

(a) m > 0 and (RP , r , m−1) |
 Ki∃v, or
(b) (RP , r , m) |
 Ki (K j∃vheldattime m−1) holds for at

least (t−d) distinct processes j �= i .

Proof It is straightforward to see that each of conditions (a)
and (b) implies Ki∃correct(v) (Condition (a): as 〈i, m − 1〉
is seen at m by all correct processes; condition (b): as the
number of distinct processes knowing ∃0, including iitself,
is greater than the maximum number of active processes that
can yet fail). If neither condition holds, then i considers it
possible that only incorrect processes know ∃v, and that they
all immediately fail (i at timem before sending anymessages,
and the others— immediately after sending the last message
seen by i). Consequently, no correct processwould ever know
∃v in r ��

By Lemma 3, at time t + 1 the conditions Ki∃v and
Ki∃correct(v) are equivalent. As in the case of (nonuniform)
consensus,wenote that if Ki∃0 (equivalently, Ki∃correct(0))
does not hold at time t+1, then it never will. We thus phrase
the following beatable algorithm, analogous to P0 in Sect. 4,
for Uniform Consensus; in this protocol, Ki∃correct(0) (the
necessary condition for deciding 0 in Uniform Consensus)
replaces Ki∃0 (the necessary condition in Nonuniform Con-
sensus) as the decision rule for 0. The decision rule for 1
remains the same.
Protocol u−P0 (for an undecided proc. i at time m):

123

Unbeatable consensus 133

if Ki ∃correct(0) then decidei (0)
elseif m = t + 1 then decidei (1)

Following a similar line of reasoning to that leading to Opt0,
we obtain an unbeatable Uniform Consensus protocol:

Protocol u − Opt0 (for an undecided proc. i at time m):

if Ki ∃correct(0)
then decidei (0)

elseif ¬Ki ∃0 and some time k ≤ m is revealed to 〈i, m〉
then decidei (1)

Recall that whether Ki∃correct(0) holds can be che-cked
efficiently via the characterization in Lemma 11. For ease
of exposition, the correctness of u − Opt0 in Theorem 4 is
shown in Appendix B.

Theorem 4 u − Opt0 solves Uniform Consensus in γ t
cr . Fur-

thermore,

• If f ≥ t − 1, then all decisions are made by time f + 1 at
the latest.

• Otherwise, all decisions are made by time f + 2 at the
latest.

Hidden paths again play a central role in the correctness and
unbeatability proof of u − Opt0. Indeed, as in the construc-
tion of Opt0 from P0 in Sect. 4, the construction of u − Opt0
from u−P0 involves some decisions on 1 beingmoved earlier
in time, by means of the last condition, checking the absence
of a hidden path. (Decisions on 0 cannot bemoved any earlier,
as they are taken as soon as the necessary condition for decid-
ing 0 holds.) Observe that the need to obtain Ki∃correct(v)

rather than Ki∃v for deciding v concisely captures the essen-
tial distinction betweenUniformConsensus andNonuniform
Consensus. The fact that the same condition—the existence
of a hidden path—keeps a process i from knowing that no
active j can know K j∃correct(v), as well as keeping i from
knowing that no j knows K j∃v, explains why the bounds
for both problems, and their typical solutions, are similar.

5.2 Unbeatability of u − Opt0

Proving the unbeatability of u − Opt0 is more challenging
than proving it for Opt0 in Sect. 4. Intuitively, this is because
the fact that an initial value of 0 is known by a nonfaulty pro-
cess does not imply that some process has already decided
on 0. As a result, the possibility of dominating u − Opt0 by
switching 0 decisions to 1 decisions needs to be explicitly
rejected. This is done by employing reachability arguments

essentially establishing the existence of the continual com-
mon knowledge conditions of [17].

More formally, as with P0 in the case of Nonuniform
Consensus, by analyzing decisions in protocols dominating
u−P0, we show that no Uniform Consensus protocol can
dominate u − Opt0. Lemmas 12 and 13 belowgive sufficient
conditions for deciding 0 in any Uniform Consensus proto-
col dominating u−P0. As mentioned above, the analysis is
considerably more subtle for Uniform Consensus, because
the analogue of Lemma 4 is not true: receiving a message
with value 0 in a protocol dominating u−P0 does not imply
that the sender has decided 0.

Remark 1 (No decision at time 0) Let Q be a protocol that
solves Uniform Consensus. Since t > 0, no process decides
at time 0 in any run of Q.

Lemma 12 (Decision at time 1) Let Q � u−P0 be a protocol
that solves Uniform Consensus and let r = r [α] be a run of
Q. Moreover, assume that i is active at time 1 and vi = 0
in r . If one of the following conditions holds in r , then 〈i, 1〉
decides 0.

1. There exists a process j �= i s.t. v j = 0 and 〈 j, 0〉 is seen
by 〈i, 1〉.

2. t > 1 and F〈i, 1〉 < t.

Proof Sketch: By domination i must decide at 〈i, 1〉, but
why must it decide on the value 0? For Part 1, we argue by
descending induction over the number ofmessages of 0-value
nodes seen by 〈i, 1〉. The base case is by validity. The induc-
tion step proceeds by cases. Case I: If, for some process k,
the node 〈k, 0〉 is hidden from 〈i, 1〉, then i considers it pos-
sible that k started with value 0 and sent a message to j but
not to i . So, by the induction hypothesis, process j decides
on 0, and hence by Uniform Agreement so must i . Case II: If
there is no process k for which the node 〈k, 0〉 is hidden from
〈i, 1〉, then it is possible that some node 〈k′, 0〉 is hidden from
〈 j, 1〉. Therefore, process i considers it possible that j is as
in Case I (and considers it possible that i sees that k′ started
out with 0 after all). By Case I, process j must decide 0, and
therefore so should i .

Finally, for Part 2, the condition guarantees that i considers
it possible that some other process does not see some node
〈 j, 0〉 nor will it ever see 〈i, 1〉 but will forever consider
it possible that nonetheless i saw 〈 j, 0〉 with value 0 and
therefore by Part 1 decided on 0 at time one before crashing.
Beyond a sketch, we now have:

Proof For both parts, we first note that by Lemma 11 and
by definition of u−P0, i decides 0 at time 1 in u−P0[α]. As
Q � u−P0, we thus have that i must decide upon some value
in r by time 1. Since process i does not decide at (r , 0) by
Remark 1, it decides at (r , 1).

123

134 A. Castañeda et al.

We now show Part 1 by induction on n−|Z0
i |, where

Z0
i � {k | vk = 0 & 〈k, 0〉is seen by〈i, 1〉.}

Since 〈 j, 0〉 is seen by 〈i, 1〉 and i is active at time 1, we have
that i, j ∈ Z0

i , and so 1 < |Z0
i | ≤ n.

Base: |Z0
i | = n. In this case, all initial values are 0, and

so by Validity i decides 0 at (r , 1).
Inductive step: Let 1 < � < n, let |Z0

i | = �, and assume
inductively that Part 1 holds for all runs r ′ in which |Z0

i | =
� + 1. We reason by cases.

1. There exists a process k s.t. 〈k, 0〉 is hidden from 〈i, 1〉.
We consider a run r ′ of Q in which vk = 0, i cannot
distinguish r ′ from r at time 1, every node that is seen by
〈i, 1〉 is also seen by 〈 j, 1〉, and finaly 〈k, 0〉 is seen by
〈 j, 1〉. Note that this is possible since 〈k, 0〉 is hidden from
〈i, 1〉. Formally, r ′ is a run of Q such that 1) r ′

i (1)=ri (1),
2) j is active at (r ′, 1), 3) k has initial value 0 and crashes
in round 1 in r ′, and finally 4) Z0

j = Z0
i ∪{k} in r ′. (Note

that by definition, Z0
i is the same in both r and r ′.) By the

induction hypothesis (switching the roles of i and j), j
decides 0 at (r ′, 1), and therefore by Uniform Agreement,
i cannot decide 1 at (r ′, 1), and therefore it does not decide
1 at (r , 1). Thus, i decides 0 at (r , 1).

2. Otherwise, 〈k, 0〉 is seen by 〈i, 1〉 for all processes k. As
|Z0

i | < n, there exists a process k /∈ Z0
i with initial value

1 (in particular, k /∈ {i, j}). Hence, as t>0, there exists a
run r ′ of Q, s.t. 1) r ′

i (1)=ri (1), 2) j is active at (r ′, 1),
3) 〈k, 0〉 is hidden from 〈 j, 1〉 in r ′, and 4) Z0

j = Z0
i in

r ′. (Once again, Z0
i has the same value in both r and r ′.)

By Case I (switching the roles of i and j), j decides 0
at (r ′, 1), and therefore by Uniform Agreement, i cannot
decide 1 at (r ′, 1), and therefore it does not decide 1 at
(r , 1). Thus, i decides 0 at (r , 1).

We move on to prove Part 2 zeros. Since F〈i, 1〉 < t by
hypothesis, there exists a process k �= i s.t. 〈k, 0〉 is seen
by 〈i, 1〉. As n > t > 1, we have that n > 2 and so there
exists a process j /∈ {i, k}; if F〈i, 1〉 > 0, then we pick j s.t.
〈 j, 0〉 is hidden from 〈i, 1〉. Since t > 1 (for the case in which
F〈i, 1〉 = 0 and 〈 j, 0〉 is seen by 〈i, 1〉) and since t > F〈i, 1〉
(for the case inwhich 〈 j, 0〉 is hidden from 〈i, 1〉), there exists
a run r ′ of Q, s.t. 1) r ′

i (1)=ri (1), 2) k never fails in r ′, 3) j
fails at (r ′, 0) before sending any messages except perhaps
to i , and 4) i fails at (r ′, 1), immediately after deciding but
before sending any messages. Thus, there exists a run r ′′ of
Q, s.t. 1) r ′′

k (m′)=r ′
k(m

′) for all m′, 2) k never fails in r ′′,
3) i and j both have initial value 0 in r ′′, 4) j fails at (r ′′, 0)
while successfully sending amessage only to i (and therefore
j ∈ Z0

i in r ′′), and 5) i fails at (r ′′, 1), immediately after
deciding but before sending out any messages. By Part 1, i

decides 0 at (r ′′, 1), and therefore k can never decide 1 during
r ′′, and therefore neither during r ′. As k never fails during
r ′, by Decision it must thus decide 0 at some point during
r ′. Therefore, by Uniform Agreement, i cannot decide 1 at
(r ′, 1), and thus it does not decide 1 at (r , 1). It follows that i
decides 0 at (r , 1), as claimed. ��
Lemma 13 (Decision at times later than 1) Let Q � u−P0

be a protocol that solves Uniform Consensus, let r = Q[α]
be a run of Q and let m >0. Let i be a process s.t. (a) Ki∃0
holds at time m for the first time in r , s.t. (b) Ki∃correct(0)
holds at time m + 1 for the first time in r , and s.t. (c) i is
active at (r , m + 1). If either of the following hold in r , then
i decides 0 at (r , m + 1).

1. All of the following hold.

• F〈i, m + 1〉 < t.
• There exists a process z s.t. Kz∃0 holds at time m−1, s.t.

〈z, m−1〉 is seen by 〈i, m〉, but s.t. 〈z, m〉 is not seen by
〈i, m+1〉,

• There exists a process j �= i s.t. 〈 j, m〉 is seen by
〈i, m+1〉 and 〈z, m−1〉 is seen by 〈 j, m〉.

2. F〈i, m + 1〉 < t − 1.

ProofSketch: Thequestion is the sameone as inLemma12,
but for times later than 1. The proof ismore involved, and uses
reachability considerations of higher order. In other words,
it uses many more intermediate runs until we “end up” with
a run where we know for certain what some process may
decide. This then tells us what processes in all these inter-
mediate runs must decide, by Uniform Agreement for every
pair of adjacent runs. By domination, i must decide at time
m + 1, but why must it decide on a 0 value? We prove this
by induction on m.

Let z be a process that 〈i, m〉 “hears about a 0 from” (so
〈i, m〉 sees 〈z, m − 1〉 and hears from it about a zero). We
first consider the case in which we are either in Part 1 (so the
process j is defined by assumption), or we’re in Part 2 and
there’s some other process other than i that sees 〈z, m − 1〉
at time m and is seen by 〈i, m + 1〉—call this process j . So
either way, we have a process called j with certain proper-
ties. We will prove the induction step for the current value
of m by (an inner) induction on the number of processes
that are hidden from 〈i, m + 1〉 or are seen by 〈i, m + 1〉
(in other words, are not known by 〈i, m + 1〉 to have failed
before time m) but have not seen 〈z, m − 1〉. This is the most
technical part of the proof. It involves bookkeeping of the
various assumptions and massaging them to show that the
analogous assumptions are met when applying the (inner or
outer) induction hypotheses.

In a nutshell, if there are no such processes (the “inner
induction” base case) then we show that we are clearly in

123

Unbeatable consensus 135

Part 2 and show that by the induction hypothesis of the outer
induction—or by Lemma 12 if m = 1—when applied to z,
that z decides 0 at time m. If there are such processes (the
“inner induction” step), then somewhat like in the proof
of Lemma 12, we show that one of following two cases
must hold. Case I: process i considers it possible that j
at time m + 1 “is like i” only seeing one additional agent
that is hidden from i , so by the induction hypothesis of the
inner induction (since the number of processes hidden from j
is smaller), process j might decide 0 at time m + 1, and
therefore by Uniform Agreement so must process i . Case II:
Process i considers it possible that j meets the conditions
of Case I, i.e., that j considers it possible that the induc-
tion hypothesis of the inner induction can be applied to i at
time m + 1. Thus, i considers it possible that j may decide 0
at m + 1, and therefore again by Uniform Agreement so
must i .

The final case to consider is that we are in Part 2 and
there’s no process at time m other than i that sees 〈z, m − 1〉
and is seen by 〈i, m + 1〉. In this case (again,with appropriate
bookkeeping), process i considers it possible that it will fail
immediately after deciding but before sending anymessages,
while some other process, say k, will not fail, and that k
will consider it possible that before failing i satisfied the
conditions of the previous case of the proof (the one with
a well-defined process j with certain properties) and that i
therefore decided 0 just before failing. Under this scenario,
when k decides (even if this is much later), it cannot decide
on 1 by Uniform Agreement. But since it does not fail, it
must decide at some time and will decide on 0 when doing
so. Thus, since i must decide now (by domination), and since
regardless of what i decides on, if i immediately fails then k
may consider it possible that i decided on 0 before failing,
process i must really decide on 0.

Proof We prove the lemma by induction on m, with the base
and the step sharing the same proof. Both parts are proven
together, highlighting local differences in reasoning for the
different parts as needed. For Part 2, we denote by z an arbi-
trary process s.t. Kz∃0 holds at time m −1 and s.t. 〈z, m−1〉
is seen by 〈i, m〉. As m > 0, such a process must exist for i
to know ∃0 at time m for the first time. (Nonetheless, unlike
when proving Part 1, it is not guaranteed when proving this
part that 〈z, m〉 is not seen by 〈i, m+1〉.)

We first note that by Lemma 10 and by definition of u−P0,
i decides 0 at time m+1 in u−P0[α]. As Q � u−P0, we thus
have that i must decide upon some value in r by time m+1.
By Lemma 10, the precondition for deciding 0 is not met by
i at (r , m). Therefore, it is enough to show that i does not
decide 1 before or at time m+1 in r in order to show that i
decides 0 at (r , m+1).

Let Z z,m
i be the set of processes k s.t. 〈k, m〉 is seen by

〈i, m+1〉 in r and s.t. 〈z, m − 1〉 is seen by 〈k, m〉 in r . (By

definition, i ∈ Z z,m
i .) Let Ci be the set of all processes k

s.t. 〈k, m〉 is either seen by, or is hidden from 〈i, m+1〉 (i.e.,
the set of nodes that 〈i, m+1〉 does not know to be inactive
at time m). Note that by definition, Z z,m

i ⊆ Ci . We first
consider the case that Z z,m

i � {i}, and prove the induction
for the given value of m under this assumption, by induction
on |Ci \ Z z,m

i |.
Base: Z z,m

i = Ci . In this case, 〈i, m+1〉 does not know
that z fails at timem−1 . Thus, z ∈ Ci and therefore z ∈ Z z,m

i .
It follows that 〈z, m〉 is seen by 〈i, m+1〉 and therefore the
second condition of Part 1 does not hold.Hence, the condition
of Part 2 must hold: F〈i, m+1〉 < t−1. Furthermore, z must
be active at time m. We now argue that z decides 0 at (r , m),
which completes the proof of the base case, as by Uniform
Agreement i can never decide 1 during r .We reason by cases;
for both cases, note that since 〈z, m〉 is seen by 〈i, m+1〉, we
have that F〈z, m〉 ≤ F〈i, m+1〉 < t−1.

• If m = 1: As Kz∃0 at time m−1 = 0, z has initial value
0. As F〈z, m〉 < t −1, we have that t > 1. By Part 2 of
Lemma 12 (for i = z), we thus have that z decides 0 at
(r , 1) = (r , m).

• Otherwise, m > 1. In this case, as 〈z, m−2〉 is seen
by 〈i, m−1〉, and as Ki∃0 holds at time m for the first
time, we have that Kz∃0 holds at time m−1 for the first
time. Similarly, as 〈z, m−1〉 is seen by 〈i, m〉, and as
Ki∃correct(0) does not hold at time m, we have that
Kz∃correct(0) does not hold at time m−1. By Part 2 of
the m-induction hypothesis (for i = z), process z decides
0 at (r , m).

Inductive step: Let {i} � Z z,m
i � Ci , and assume that

the claim holds whenever Z z,m
i is of larger size. For Part 1,

note that j ∈ Z z,m
i , for j as defined in the conditions for

that part; for Part 2, let j ∈ Z z,m
i be arbitrary. Analogously

to the proof of the induction step in the proof of Part 1 of
Lemma 12, we reason by cases. For the time being, assume
that the conditions of Part 2 hold, i.e., that F〈i, m+1〉 < t−1.

I. There exists a process k ∈ Ci s.t. 〈k, m〉 is hidden from
〈i, m+1〉. We consider a run r ′ of Q that i cannot dis-
tinguish from the run r , up to time m + 1 (hence Z z,m

i
and Ci are the same sets in both r and r ′), and for each
k′ ∈ Z z,m

i ∪ {k}, the node 〈z, m − 1〉 is seen by 〈k′, m〉,
which in turn is seen by 〈 j, m+1〉 (and consequently
Z z,m

j = Z z,m
i ∪{k} in r ′); note that this is possible because

〈k, m〉 is hidden from 〈i, m+1〉 and z can fail at timem−1
after sending a message to all processes in Z z,m

i ∪ {k}.
More precisely, r ′ is a runof Q s.t. 1) r ′

i (m+1) = ri (m+1),
2) j is active at (r ′, m+1), 3) 〈z, m − 1〉 is seen by 〈k, m〉
in r ′, and 4) Z z,m

j = Z z,m
i ∪{k} and C j = Ci in r ′. We

note that F〈 j, m+1〉 = F〈i, m+1〉−1 in r ′, and that by

123

136 A. Castañeda et al.

definition F〈i, m+1〉 is the same in both r and r ′.We also
observe that r ′

j (m) = r j (m) (as r ′
i (m+1) = ri (m+1)).

By the inductive hypothesis for Z z,m
j (i.e., for j w.r.t. z

at time m), process j decides 0 at (r ′, m+1), and there-
fore by Uniform Agreement, i cannot decide 1 in r ′, and
therefore it cannot decide 1 before or at m+1 in r ′, and
the proof is complete.

II Otherwise, for each process k ∈ Ci , 〈k, m〉 is seen by
〈i, m+1〉. As Z z,m

i � Ci , there exists a process k �= i
s.t. 〈k, m〉 is seen by i, m+1 but s.t. 〈z, m−1〉 is not
seen by 〈k, m〉 (thus k �= j). Let us consider a run r ′
of Q that i cannot distinguish from the run r up to time
m + 1 (hence Z z,m

i and Ci are the same sets in both
r and r ′), in which process k crashes at time m after
sending a message to i but before sending a message to
j . Namely, 〈k, m〉 is seen by 〈i, m + 1〉 but unseen by
〈 j, m + 1〉 (k can crash in r ′ because F〈i, m+1〉 < t in
r). Finally, for each k′ ∈ Ci , the node 〈k′, m〉 is seen by
〈 j, m+1〉 in r ′ (thus C j = Ci in r ′; note that k′ might
crash after sending a message to i at time m), and if
k′ ∈ Z z,m

i , then the node 〈z, m − 1〉 is seen by 〈k′, m〉
(and consequently Z z,m

j = Z z,m
i in r ′). Formally, r ′ is a

run of Q s.t. 1) r ′
i (m+1) = ri (m+1), 2) process j is

active at (r ′, m+1), 3) 〈k, m〉 is hidden from 〈 j, m+1〉
in r ′, and 4) Z z,m

j = Z z,m
i and C j ⊇ Ci in r ′. (Once

again, Z z,m
i and Ci have the same values in both r and

r ′.) We note that F〈 j, m + 1〉 = F〈i, m + 1〉 + 1 in r ′,
and that oncemore, by definition, F〈i, m + 1〉 is the same
in both r and r ′. Again, we have that r ′

j (m) = r j (m). By
Case I (for i = j), and since Case I uses the inductive
hypothesis for Z z,m

j with one less failure, we conclude
that j decides 0 at (r ′, m +1). Therefore, by Uniform
Agreement, process i cannot decide 1 at (r ′, m+1), and
thus it cannot decide 1 before or at m + 1 in r , and the
proof is complete.

To show that the Z z,m
i -induction step also holds under the

conditions of Part 1, we observe that since 〈z, m〉 is not seen
by i,m+1 in this case, the amount of invocations of Case II
(which uses Case I with one additional known failure) before
reaching the Z z,m

i -induction base is strictly smaller than that
of Case I (which uses the Z z,m

i -induction hypothesis with
one less known failure), and therefore the Z z,m

i -induction
base is reached with less known failures, i.e., with less than
t−1 known failures, i.e., the conditions of Part 2 hold at that
point.

Finally, we consider the case in which Z z,m
i = {i}. As any

j as in Part 1 satisfies j ∈ Z z,m
i , we have that the conditions

of Part 2 hold, i.e., F〈i, m+1〉 < t−1. Furthermore, we have
that 〈z, m〉 is not seen by 〈i, m+1〉 (otherwise, z ∈ Z z,m

i). As
F〈i, m+1〉 < t−1 < n−2, there exist two distinct processes
j, k �= i that are not known to 〈i, m+1〉 to fail (and thus

i, j, k, z are distinct). Thus, 〈 j, m〉 and 〈k, m〉 are seen by
〈i, m+1〉.

By definition of j, k, there exists a run r ′ of Q, s.t. 1)
r ′

i (m +1) = ri (m +1), 2) k never fails in r ′, 3) j fails at
(r ′, m) before sending any messages, 4) i fails at (r ′, m +1),
immediately after deciding but before sending anymessages,
and 5) the faulty processes in r ′ are those known by 〈i, m〉 to
fail in r , and in addition i and j . We note that by definition,
F〈i, m+1〉 is the same in r and r ′, even though the number of
failures in r ′ is F〈i, m+1〉 + 2. We notice that there exists a
run r ′′ of Q, s.t. 1) r ′′

k (m′) = r ′
k(m

′) for allm′, 2) k never fails
in r ′′, 3) 〈z, m − 1〉 is seen by both 〈i, m〉 and 〈 j, m〉 in r ′′, 4)
j fails at (r ′′, m) while successfully sending a message only
to i (and therefore both j ∈ Z z,m

i and F〈i, m + 1〉 < t−1 in
r ′′), and 5) i fails at (r ′′, m + 1), immediately after deciding
but before sendingout anymessages.By the proof for the case
in which Z z,m

i � {i} (j ∈ Z z,m
i), i decides 0 at (r ′′, m+1),

and therefore k can never decide 1 during r ′′, and therefore
neither during r ′. As k never fails during r ′, by Decision it
must thus decide 0 at some point during r ′. Therefore, by
Uniform Agreement, i cannot decide 1 before or at m+1 in
r ′, and thus it does not decide 1 before or at m + 1 in r , and
the proof is complete. ��

Now that we have establishedwhen processesmust decide
0 in any protocol dominating u−P0, we can deduce when
processes cannot decide in any such protocol.

Lemma 14 (No earlier decisions when Ki∃0) Let Q �
u−P0 be a protocol that solves Uniform Consensus, let r
be a run of Q, let m be a time, and let i be a process. If at
time m in r we have Ki∃0, but ¬Ki∃correct(0), then i does
not decide at (r , m).

Proof If m =0, by Lemma 11 and since ¬Ki∃correct(0) at
m =0 (even though Ki∃0), we have t>0. Thus, byRemark 1,
i does not decide at (r , m). Assume henceforth, therefore,
that m >0.

As ¬Ki∃correct(0), we have that ¬Ki∃0 holds at time
m−1, by Lemma 11. Thus, there exists a process z s.t. Kz∃0
atm−1, and 〈z, m−1〉 is seen by 〈i, m〉. In turn, byLemma11,
we have that F〈i, m〉 < t − 1. There exists a run r ′ of Q, s.t.
1) r ′

i (m)=ri (m), and 2) the faulty processes in r ′ are those
known by 〈i, m〉 to fail in r . We henceforth reason about
r ′. By definition of r ′, F〈i, m+1〉 = F〈i, m〉 < t−1 (by
definition, the value of F〈i, m〉 is the same in both r and r ′).
Thus, by Part 2 of Lemma 13, i decides 0 at (r ′, m+1), and
hence i does not decide at (r ′, m), and therefore neither does
it decide at (r , m). ��
Lemma 15 (No earlier decisions when ¬Ki∃0) Let Q �
u−P0 be a protocol that solves Uniform Consensus, let r
be a run of Q, let m be a time, and let i be a process. If there
exists a hidden path w.r.t. 〈i, m〉 in r , and if at time m in r we
have ¬Ki∃0, then i does not decide at (r , m).

123

Unbeatable consensus 137

Proof sketch: We start by considering the more intuitive
case of F〈i, m〉 < t . We first note that i considers possible
at time m a run r ′ in which a 0 value “trickled down” the
hidden path to a process z that is last in the path (and failed).
Moreover, in r ′ this value was seen by a process j that never
fails, and process i is about to fail in this round. By previous
lemmas, it follows that in r ′ process j must decide on some
value before or at time m + 1. It is therefore enough to show
that j does not decide on 1 up to time m + 1 in this run,
because it must then decide on 0. Now we note that since j
sees 〈z, m − 1〉, process j considers possible at time m + 1
in r ′ a run r ′′ in which z in fact fails only at time m. By
previous lemmas it follows that in r ′′ process z decides 0 at
timem, so j cannot decide 1 in r ′′. Since j cannot distinguish
between r ′ and r ′′ up to time m + 1, it follows that j cannot
decide 1 up to time m + 1 in r ′, as desired.

The second case of F〈i, m〉 = t is more technical, since
the previous lemmas utilized in the first case all require
F〈·, ·〉 < t for the process we are reasoning about at the time
we are considering. That is, all of the lemmas require having
an extra “possible failure” from the point of view of that pro-
cess. The proof is therefore more involved and goes through
a longer sequence of “runs considered possible” until, by
careful bookkeeping, a run in which such a condition holds
is reached, and the previous lemmas can be used.

Proof As¬Ki∃0 at timem, then byValidity, i does not decide
0 at (r , m) (see also Lemma 2). Thus, it is enough to show
that i does not decide 1 at (r , m) in order to complete the
proof. If m = 0, then by Remark 1, i does not decide 1 at
(r , m) either. Assume henceforth, therefore, that m >0.

As there exists a hidden path w.r.t. 〈i, m〉, there exist a
process z �= i such that 〈z, m−1〉 is hidden from 〈i, m〉. We
claim that there is a process j �= i for which 〈 j, m−1〉 is
seen by 〈i, m〉. If n = 2, then there cannot exist a hidden
path w.r.t. 〈i, m〉 because time 0 is revealed to i at time 1,
regardless of failures of the other process; thus, necessarily
n ≥ 3. Now, if ∀ j �= i , it is the case that 〈 j, m−1〉 is not seen
by 〈i, m〉, then time m − 1 is revealed to 〈 j, m−1〉, which
contradicts the existence of a hidden path w.r.t. 〈i, m〉.

We first consider the case in which F〈i, m〉 < t. In this
case, there exists a run r ′ = Q[β] of Q, s.t. all of the following
hold in r ′:

• r ′
i (m) = ri (m).

• z is the unique process that knows ∃0 at m−1, and knows
so then for the first time, either having initial value 0 (if
m = 1) or (as explained in the Nonuniform Consensus
section) seeing only a single node that knows ∃0 at m−2
(if m >1).

• z fails at (r ′, m−1), successfully sending messages to all
nodes except for i .

• The faulty processes in r ′ are those known by 〈i, m〉 to
fail in r , and in addition i , which fails at time m without
sending out any messages. In particular, j never fails.

We henceforth reason about r ′. First, we note that
〈 j, m+1〉 does not know that z fails at m −1 (as opposed
to at m). As 〈 j, m〉 sees 〈z, m−1〉, as Kz∃0 at m−1, and as
j never fails, by Lemma 11 we have that K j∃correct(0) at
(r ′, m +1). Thus, j decides at time m +1 in u−P0[β], and
so j must decide before or at m+1 in r ′. As ri (m)= r ′

i (m),
then by Uniform Agreement it is enough to show that j does
not decide 1 up to time m + 1 in r ′ in order to complete the
proof.

There exists a run r ′′ of Q, s.t. 1) r ′′
j (m+1) = r ′

j (m+1),
and 2) the only difference between r ′′ and r ′ up to time m is
that in r ′′, z fails only at time m, after deciding but without
sending a message to j . By Uniform Agreement, it is enough
to show that z decides 0 at (r ′′, m) in order to complete the
proof.

We henceforth reason about r ′′. As z does not know at m
that neither z nor i fail, we have F〈z, m−1〉 ≤ F〈z, m〉 <

t−1. Thus, t > 1. If m = 1, we therefore have by Part 2 of
Lemma 12 that z decides 0 at (r ′′, m). Otherwise, m > 1.
As Kz∃0 at m −1 for the first time, as 〈z, m−1〉 sees only
one node at m−1 that knows ∃0, and as F〈z, m〉 < t−1, by
Lemma 11 we have¬Kz∃correct(0) at m−1. Thus, by Part 2
of Lemma 13 (for i = z), z decides 0 at (r ′′, m). In both of
these cases, the claim holds.

We now consider the case in which F〈i, m〉 = t. There
exists a run r̂ = Q[β] of Q, s.t. all of the following hold:

• r̂i (m) = ri (m).
• All processes k s.t. 〈k, m−1〉 is hidden from 〈i, m〉
(including k = z) know ∃0 at (r̂ , m −1), either having
initial value 0 (if m =1) or all seeing only a single node
that knows ∃0 at m −2 (and which fails at time m −2
without being seen by 〈i, m〉) — denote this node by z′.

• All such processes fail at timem−1, successfully sending
messages to all nodes except for i .

• The faulty processes failing in r̂ are those knownby 〈i, m〉
to fail in r . In particular, there are t such processes.

We henceforth reason about r̂ . Note that i and j never
fail in r̂ . Moreover, for each k s.t. 〈k, m−1〉 is hidden from
〈i, m〉, it is the case that 〈k, m−2〉 is seen by 〈i, m − 1〉 (for
otherwise 〈k, m−1〉would not be hidden from 〈i, m〉). Thus,
F〈i, m−1〉 ≤ F〈 j, m〉 (equality can actually be shown
to hold here, but we do not need it). As the number of
nodes at m −1 knowing ∃0 that are seen by 〈 j, m〉 equals
F〈i, m〉 − F〈i, m−1〉 ≥ t − F〈 j, m〉 (by the above remark,
equality holds here as well), we have by Lemma 11 that
K j∃correct(0) at m, and therefore j decides at time m
in u−P0[β]; thus, it must decide before or at m in r̂ . As

123

138 A. Castañeda et al.

ri (m) = r̂i (m), by Uniform Agreement it is enough to show
that j does not decide 1 up to timem in r̂ in order to complete
the proof.

We proceed with an argument similar in a sense to those
of Part 1 of Lemma 12 and the inner induction in the proof
of Lemma 13.

As 〈z, m−1〉 is seen by 〈 j, m〉, there exists a run r ′′ of Q,
s.t. 1) r ′′

j (m) = r̂ j (m), and 2) the only difference between
r ′′ and r̂ up to time m is that in r ′′, z never fails, but rather
i fails at m − 1 after sending a message to j but without
sending a message to z. We note that there are t processes
failing throughout r ′′. We henceforth reason about r ′′. If m =
1, then z has initial value 0 and if m > 1, then 〈z, m−1〉
sees 〈z′, m−2〉; either way, by Lemma 11, Kz∃correct(0)
at (r ′′, m) and therefore z must decide before or at time m.
Thus, it is enough to show that z does not decide 1 up to time
m in r ′′ in order to complete the proof.

As 〈i, m−1〉 is not seen by 〈z, m〉, there exists a run r (3)

of Q, s.t. 1) r (3)
z (m) = r ′′

z (m), and 2) the only difference
between r (3) and r ′′ up to time m is that in r (3), 〈i, m − 1〉
sees 〈z′, m−2〉 (or, if m = 1, then the difference is that i
has initial value 0); we note that 〈i, m−1〉 is still seen by
〈 j, m〉. We note that there are t processes failing throughout
r (3). Observe that the number of nodes at m−1 knowing ∃0
that are seen by 〈 j, m〉 in r (3) is greater than in each of r
and r̂ (between which j at m cannot distinguish), however
F〈 j, m〉 remains the same in all three runs r̂ , r ′′ and r (3);
thus, K j∃correct(0) at m in r (3) as well, and therefore j
must decide before or at time m in r (3). Thus, it is enough to
show that j does not decide 1 up to time m in r (3) in order to
complete the proof. We henceforth reason about r (3).

As 〈i, m−1〉 is seen by 〈 j, m〉, there exists a run r (4) of Q,
s.t. 1) r (4)

j (m) = r (3)
j (m), and 2) the only difference between

r (4) and r (3) up to time m is that in r (4), i does not fail (and
is thus seen by 〈z, m〉). We note that there are t−1 processes
failing throughout r (4), and thus in particular F〈z, m〉 < t.
If m = 1, then by Part 1 of Lemma 12 (for i = z and j = i),
z decides 0 in (r (4), m). Otherwise, i.e., if m > 1, by Part 1
of Lemma 13 (for i = z, z = z′, and j = i), z decides 0 in
(r (4), m). Either way, the proof is complete. ��

Directly from Lemmas 14 and 15, we deduce sufficient
conditions for unbeatability of UniformConsensus protocols
dominating u−P0; these conditions also become necessary
if it can be shown that there exists some Uniform Consensus
protocol dominating u−P0 that meets them, as we indeed
show momentarily for u − Opt0.

Lemma 16 A protocol Q � u−P0 that solves Uniform Con-
sensus and in which a node 〈i, m〉 decides whenever any of
the following hold at m, is an unbeatable Uniform Consensus
protocol.

• Ki∃correct(0).

• No hidden path w.r.t. 〈i, m〉 exists, and ¬Ki∃0.

By Lemma 16, we have that if u − Opt0 solves Uniform
Consensus, then it does so in an unbeatable fashion.

Lemma 17 u − Opt0 � u−P0.

Proof As explained above, at time t+1 no hidden paths exist
(see the proof of Lemma 8), and furthermore, by Lemma 3
we have at time t+1 that Ki∃0 iff Ki∃correct(0). The claim
therefore holds by definition of u − Opt0 and u−P0. ��

The unbeatability of u − Opt0 directly follows from The-
orem 4 and Lemma 16:

Theorem 5 u − Opt0 is an unbeatable Uniform Consensus
protocol in γ t

cr.

5.3 Comparing u − Opt0 to Previous Protocols

The fastest early-stopping protocol for Uniform Consensus
in the literature, opt-EDAUC of [3] (a similar algorithm is in
[9]), also stops in min(f +2, t+1) rounds at the latest. Simi-
larly to Lemma 9, not only does u − Opt0 strictly dominate
opt-EDAUC, but furthermore, there are adversaries against
which u − Opt0 decides in 1 round, while opt-EDAUC
decides in t + 1 rounds:

Lemma 18 If 2 ≤ t ≤ n − 2, then u − Opt0 strictly domi-
nates the opt-EDAUC protocol of [3]. Moreover, there exists
an adversary for whichdecidei (1) is performed after 1 round
in u − Opt0, and after t + 1 rounds in opt-EDAUC.

Proof The proof has a similar structure to that of Lemma 9.
opt-EDAUC decides either one round after the sender set
repeats, or at time t+ 1. As argued in the proof of Lemma 9,
when the sender set repeats there is a round k all of whose
nodes are revealed; if they don’t contain evidence of an initial
value of 0, then u − Opt0 decides at round k. Otherwise, by
Lemma 11(a) a correct process will know ∃correct(0) and
decide one round later, and if this occurs at time m = t + 1,
then by Lemma 11(b) it decides at time t+1. An adversary β

onwhich u − Opt0 beats opt-EDAUCwith the claimedmar-
gins is a simplified version of the adversary α defined in
the proof of Lemma 9. Denote the processes by Procs =
{1, 2, . . . , n}. All initial values in β are 0. In round 1, two
processes crash—process 1 and process 2, with process 1
sending only to process n and nobody else, and process 2
sending to everyone except process n. No process fails in
round 2, and in each of the rounds m = 3, . . . , t, process m
crashes without sending any messages. Since precisely t pro-
cesses fail in β we have that β ∈ Crash(t). For 3 ≤ m ≤ t,
every correct process fails to hear from process m in round m
for the first time. Every correct process i �= n fails to hear
from process 1 in round 1 and from process 2 in round 2,

123

Unbeatable consensus 139

while process n fails to hear from 2 in round 1 and from
process 1 in round 2. In the protocol opt-EDAUC of [3], no
process decides before its sender set repeats, and thus all
decisions are taken at time t + 1 when the adversary is β.
In u − Opt0, every correct process i sees n − 1 ≥ t + 1
values of 0 in the first round. By Lemma 11(b) it follows
that Ki∃correct(0) holds at time 1, the rule for decidei (0)
in u − Opt0 is satisfied, and process i decides 0 at time 1. ��

6 Efficient implementations and stopping
times

In our analysis, all protocols are full-information, however,
in fact, they can all be implemented in such a way that any
process sends any other process a total of O(n log n) bits
throughout any execution.

Moses and Tuttle in [21] show how to implement full-
information protocols in the crash failure model with linear-
sizemessages. In our case, a further improvement is possible,
since decisions in all of the protocols depend only on the
identity of hidden nodes and on the vector of initial values.

In a straightforward implementation, we can have a pro-
cess i in each round report only the new information it
learned in the previous round, or a heartbeat in case no new
information was learned. More precisely, process i reports
“value(j) = v” once for every j whose initial value it
discovers, and “failed_at(j) = �” once where � is the
earliest failure round it knows for j . In addition, it should
send an “I’m_alive” message in every round in which it
has nothing to report.

We argue that in every execution of such an implemen-
tation each process i sends a total of O(n log n) bits to any
other process:

1. I’m_alivemessages. Since all our protocols decide in
at most f + 1 or min(f + 2, t + 1) rounds, Lemma 8 and
Theorem 4, i sends I’m_alive fewer than f + 2 times.
Thus, i sends O(f) bits for I’m_alive messages as
these messages are constant-size.

2. value messages. Clearly a process i sends at most one
value message for every (faulty or correct) j . Since
encoding j’s ID requires log n bits and j’s initial value
requires one bit, we have that i sends O(n log n) bits for
value messages.

3. failed_at messages. First we observe that i sends at
most twofailed_atmessages for every faulty j : when
j crashes, say at round m, processes might have uncer-
tainty if j crashes at round m or m + 1 (due to the failure
pattern) but certainly it is not possible that a process sees j
crashes before of after. Since encoding j’s ID along with
a failure round number m ≤ f + 2 requires O(log n) bits,

we obtain that a process i sends a total of O(f log n) bits
for failed_at messages.

Finally, we note that in our efficient implementation pro-
cesses can perform the same decision tests in protocols Opt0
and u − Opt0, since decisions depend only on the times at
which crashed nodes fail and on initial values.

Theorem 6 For each of the protocols Opt0 and u − Opt0
there is a protocol with identical decision times for all adver-
saries, in which every process sends O(n log n) bits overall
to each other process in any given run.

We now consider the question when a process that has
decided on a value can stop, thereby sending no further mes-
sages and terminating the protocol.

First consider the protocol Opt0. Consider any execution
and a process i deciding at some round. If i’s decision is 0,
it could be the case that i is correct in the execution and is
the only one knowing the existence of a 0, hence it cannot
terminate because all other correct processes would decide 1.
Thus, it has to go onemore round in order to communicate its
decision to all correct processes. Interestingly, if i’s decision
is 1, i knows that there is no active process that knows the
existence of a 0, hence it can terminate at the very same
round as there is no way a correct process can decide 0 in
any subsequent round. Therefore, in Opt0, every process can
terminate in at most min(f + 2, t + 1) rounds.

Now for protocol u − Opt0, consider any execution and
a process i deciding at some time m. In this case, regardless
of its decision, i can stop at time m. The reason is that both
deciding rules ensure that all active processes have the same
information: the rule for deciding 1 is the same as in Opt0,
while the rule for 0 guarantees that at least a single process
knows a 0, which implies that all active processes know there
is a 0 preventing them to decide 1. It follows that processes
can terminate no later than time

min(f + 2, t + 1) rounds in Opt0.

Theorem 7 In protocols Opt0 and u − Opt0, processes can
terminate in at most min(f+ 2, t+ 1) rounds in every execu-
tion.

7 Alternative notions of unbeatability

It is possible to consider variations on the notion of unbeat-
ability. One could, for example, compare runs in terms of
the time at which the last correct process decides. We call
the corresponding notion last-decider unbeatability. 5 This
neither implies nor is implied by the notion of unbeatability

5 This notion was suggested to us by Michael Schapira; we thank him
for the insight.

123

140 A. Castañeda et al.

studied so far in this paper. None of the consensus protocols
in the literature is last-decider unbeatable. In fact, all of our
protocols are also last-decider unbeatable:

Theorem 8 The protocol Opt0 is also last-decider unbeat-
able for consensus, while u − Opt0 is last-decider unbeat-
able for uniform consensus.

We note that Lemmas 9 and 18 show that our protocols
beat the previously-known best ones by a large margin w.r.t.
last-decider unbeatability as well.

Definition 5 (Last-decider domination and unbeatability) A
decision protocol Q last-decider dominates a protocol P
in γ , denoted by Q � l.d.

γ P , if for all adversaries α, if i the
last decision in P[α] is at time mi , then all decisions in Q[α]
are taken before or at mi . Moreover, we say that Q strictly
last-decider dominates P if Q � l.d.

γ P and P/� l.d.
γ Q. I.e., if

for some α ∈ γ the last decision in Q[α] is strictly before
the last decision in P[α].

A protocol P is a last-decider unbeatable solution to a
decision task S in a context γ if P solves S in γ and no
protocol Q solving S in γ strictly last-decider dominates P .

Remark 2 • If Q �γ P , then Q � l.d.
γ P . (But not the other

way around.)
• None of the above forms of strict domination implies the
other.

• None of the above forms of unbeatability implies the
other.

As the remark states, last-decider domination does not
imply domination in the sense of this paper (on which our
proofs is based). Nonetheless, the specific property of proto-
cols dominating Opt0 and u − Opt0, which we use to prove
that these protocols are unbeatable, holds also for protocols
that only last-decider dominate these protocols.

Lemma 19 1. Let Q � l.d.
γ P0 satisfy Decision. If Ki∃0 at m

in a run r = Q[α] of Q, then i decides in r no later than
at m.

2. Let Q � l.d.
γ u−P0 satisfy Decision. If Ki∃correct(0) at m

in a run r = Q[α] of Q, then i decides in r no later than
at m.

The main idea in the proof of Lemma 19 is to show that
i considers it possible that all other active processes also
know the fact stated in that part, and so they must all decide
by the current time in the corresponding run of the dominated
protocol. Hence, the last decision in that run is made in the
current time; thus, by last-decider domination, i must decide.
The proof of Lemma 19 appears in Appendix C.

As already explained, Theorem 8 directly follows from
Lemma 19, and from the proofs of Theorems 3, 4 and 5.

8 Final discussion

8.1 More related work

In line of this work, [1] applies the notion of unbeatability
to the well-known k-set agreement problem, a generaliza-
tion of consensus in which the number of decisions is at
most k (thus consensus is 1-set agreement). In the fault-
tolerant synchronous message setting, that paper uses a
similar knowledge-based analysis to obtain an unbeatable
algorithm for nonuniform k-set agreement and an algorithm
for uniform k-set agreement that strictly dominates all known
solutions to this problem.

The Knowledge of Precondition Principle has also been
helpful for obtaining better solutions to other agreement
problems or understanding the power of models of com-
putation. In [14], this principle is instrumental in obtaining
communication efficient algorithms in synchronous settings
by exposing communication patterns that enable communi-
cation through silence, which leads to a message-optimal
protocol for the atomic commitment problem. Furthermore,
with the use of the Knowledge of Precondition Principle, it is
shown in [5] that the bounded communication model without
clocks, a model introduced in that paper in which processes
do not have clocks, but do have bounds on the duration of
events and of communication, ismore powerful than the fully
asynchronous message-passing model.

8.2 Conclusions

Unbeatability is a natural optimality criterion for distributed
protocols. It formalizes the intuition that a given proto-
col cannot be strictly improved upon, which is signifi-
cantly stronger than saying that it is worst-case optimal,
or even early stopping. Using a knowledge-based analy-
sis guided by the Knowledge of Precondition Principle,
we have obtained the first explicit unbeatable protocols
for Nonuniform and Uniform Consensus. All of the pro-
tocols that we have presented have a very concise and
intuitive description, and are efficiently implementable; thus,
unbeatability is attainable at a modest price. Crucially,
our unbeatable protocols can decide much faster than pre-
viously known solutions to the same problems (see [2]
for a more detailed comparison with previous Uniform
Consensus solutions). Finally, although we have focused
on the binary version of consensus, our analysis can be
easily extended to the multivalued version of the prob-
lem.

Acknowledgements Armando Castañeda was supported by PAPIIT
projects IA102417 and IN108720.YannaiGonczarowskiwas supported
in part by ISF grant 230/10, by the Google Inter-university center for
Electronic Markets and Auctions, by the European Research Coun-
cil under the European Community’s Seventh Framework Programme

123

Unbeatable consensus 141

(FP7/2007-2013) / ERCgrant agreement no. [249159] and by anAdams
Fellowship of the Israeli Academy of Sciences and Humanities. Yoram
Moses is the Israel Pollak Academic chair at the Technion; his work
was supported in part by ISF grants 1520/11 and 2061/19.

A Additional Proofs of Sect. 4

Proof of Lemma 1 Let P be a consensus protocol and let
RP = R(P, γ t

cr). Let v ∈ V, let r ∈ RP and let 〈i, m〉
be a node s.t. i decides on v at time m in r .

We commence by proving (a). Assume for contradiction
that no process has initial value v in r . By definition of γ t

cr,
there exists a run r ′ of P , s.t. 1) r ′

i (m) = ri (m), 2) i does
not fail in r ′, and 3) The initial values in r ′ are the same as
in r . As r ′

i (m) = ri (m), we have that i decides on v at time
m in r ′ as well. As the initial values in r ′ are the same as in
r , we have that no process has initial value v in r ′. As i does
not fail in r ′, we therefore have that Validity does not hold
regarding the decision of i in r ′—a contradiction.

We move on to proving (b). Assume for contradiction that
some process j decides v̄ at some time m′ ≤ m in r , and that
j is active at m in r . Once again by definition of γ t

cr, there
exists a run r ′ of P , s.t. 1) r ′

i (m)=ri (m), 2) r ′
j (m

′)=r j (m′),
and 3) neither i nor j fail in r ′. As r ′

i (m) = ri (m), we have
that i decides onv at timem in r ′ aswell; as r ′

j (m
′) = r j (m′),

we have that j decides on v̄ at timem′ in r ′ aswell. As neither
i not j fail in r ′, we therefore have that Agreement does not
hold in r ′ — a contradiction. ��

The proof of Lemma 3 is assisted by Definition 6 and
Lemma 20:

Definition 6 Let P be a protocol in γ t
cr and let r ∈ RP =

R(P, γ t
cr). Let v ∈ V and let 〈i, m〉 be a node. We say that

there is a v-chain for 〈i, m〉 in the run r if, for some d ≤ m,
there is a sequence j0, j1, . . . , jd = i of distinct processes,
such that v j0 = v and for all 1 ≤ k ≤ d, the process jk
receives a message from jk−1 at time k in r .

Lemma 20 Let P be a fip in γ t
cr and let r ∈ RP = R(P, γ t

cr).
Then, for every processes i and time m ≥ 0, it is the case
that (RP , r , m) |
 Ki∃0 iff there is a 0-chain for 〈i, m〉 in r .

Proof For the first direction, assume that there is a 0-chain
j0, . . . , jd = i for 〈i, m〉 in r . It is easy to show by induction
that K jk ∃0 at k in r for every k; therefore, Ki∃0 at d in r ,
and since P is a fip, Ki∃0 at m in r , as required. We prove
the second direction for all i by induction on m.

Base (m = 0): Since process i at time 0 knows no initial
value but its own, we have that vi = 0 and so i (with d = 0)
is a 0-chain as required.

Inductive step (m > 0): In a fip, Ki∃0 at m implies that
either Ki∃0 at m − 1 or K j∃0 at m − 1 for some j �= i that
successfully sends a message at time m − 1 to j . If Ki∃0 at

m −1, then by the induction hypothesis there exists a 0-chain
for 〈i, m − 1〉 in r , and by definition this is also a 0-chain for
〈i, m〉 in r . It remains to consider the case in which Ki∃0
does not hold at m − 1; therefore, K j∃0 at m − 1 for some j
that successfully sends a message at time m − 1 to j . By the
induction hypothesis, there exists a 0-chain j0, . . . , jd = j
for 〈 j, m − 1〉. We first claim that i does not appear in that
chain; indeed, if jd ′ = i for some d ′ < d, then by definition
j0, . . . , jd ′ would be a 0-chain for 〈i, m − 1〉, and by the
previous direction we would have Ki∃0 at m − 1 in r . We
now claim that d = m − 1; indeed, if d < m − 1, then
j0, . . . , jd would be a 0-chain for 〈 j, d〉, and so we would
have K j∃0 at d < m − 1. As j is active at all times earlier
than m − 1, we would have that 〈 j, d〉 successfully sends a
message to i , and so Ki∃0 at d +1 ≤ m −1; as P is a fip, we
would therefore have that Ki∃0 at m − 1 — a contradiction.
As i does not appear in j0, . . . , jd , and as d = m − 1, by
definition j0, . . . , d j , i is a 0-chain for i , as required. ��
Proof of Lemma 3 Assume that (RP , r , t + 1) |
 Ki∃v. By
Lemma 20, there exists a 0-chain j0, . . . , jd for 〈i, t + 1〉.
If j appears in j0, . . . , jd , then by Lemma 20 we are done;
assume, therefore, that j does not appear in j0, . . . , jd . If
d < t + 1, then since i successfully sends all messages at
times earlier than t + 1, we have that j0, . . . , jd , j is a 0-
chain for 〈 j, t + 1〉; therefore, by Lemma 20, K j∃v at t + 1,
as required. Otherwise, d = t + 1, and so, as j0, . . . , jd−1

are t + 1 distinct processes, there exists 0 ≤ d ′ ≤ d − 1 s.t.
jd ′ is nonfaulty throughout r . Therefore, j0, . . . , jd ′ , j is a
0-chain for 〈 j, t + 1〉, as required. ��
Proof of Lemma 5
⇒: Assume that (RP , r , m) �|
 Ki

not_known(∃0). Therefore, by definition of Ki , there exists
a run r ′ ∈ RP s.t. 1) r ′

i (m) = ri (m), and 2) (RP , r ′, m) �|

not_known(∃0). As (RP , r ′, m) �|
 not_known(∃0), there
exists a process j s.t. K j∃0 holds at m in r ′ (and j is active
at m in r ′). By definition, K j∃0 first holds at or before time
m in r ′, and so j decides 0 before or at time m in r ′; there-
fore, (RP , r ′, m) �|
 none_decided(0). As r ′

i (m) = ri (m),
we therefore have (RP , r , m) �|
 Kinone_decided(0), as
required.

⇐
: We will show that (RP , r , m) |
 not_known(∃0)
implies that (RP , r , m) |
 none_decided(0); by defini-
tion of knowledge, it will then follow that (RP , r , m) |

Kinot_known(∃0) implies (RP , r , m)|
Kinone_decided
(0). Assume, therefore, that (RP , r , m) |
 not_known(∃0),
and let j be a process that is active at time m in r . As
not_known(∃0) at m in r , we have that K j∃0 does not hold
at m in r . As P is a fip, we have that neither does K j∃0 hold
at any time prior to m in r . By definition, therefore j does
not decide 0 before or at m in r , as required. ��

123

142 A. Castañeda et al.

B Proof of Theorem 4

Decision: In some run of u − Opt0, let i be a process and
let m be a time s.t. i is active at m but has not decided until
m, inclusive. Let m̃ ≤ m be the latest time not later than m
s.t. a hidden path exists w.r.t. 〈i, m̃〉. We claim that as i is
undecided at m, we have m̃ ≥ m −1; indeed, otherwise, by i
being undecided at m̃+1 despite the absence of a hidden path
w.r.t. 〈i, m̃ + 1〉, we would have Ki∃0 at m̃ + 1, and so, by
Lemma 11, we would have Ki∃correct(0) at m̃ + 2 ≤ m—a
contradiction to i being undecided at m.

In Definition 4, for a node 〈i, m〉, we denote by F〈i, m〉 ∈
{0, . . . , t} the number of failures known to 〈i, m〉, i.e., the
number of processes j �= i from which i does not receive a
message at time m.

As a hidden path exists w.r.t. 〈i, m̃〉, we have, as in the
proof of Lemma 8, that m̃ ≤ f ; in fact, the same proof shows
the even stronger claim m̃ ≤ F〈i, m̃〉 — we we will later
return to this inequality. As m̃ ≤ f , we therefore have that
m ≤ m̃ + 1 ≤ f + 1. We thus have that every process that is
active at time f + 2, decides by this time at the latest.

Before moving on to show Validity and Uniform Agree-
ment, we first complete the analysis of stopping times.
Assume that m = f + 1. (i is still a process that is active
but undecided at m.) As f = m − 1 ≤ m̃ ≤ F〈i, m̃〉 ≤
F〈i, m〉 ≤ f , we have that both m̃ = m −1 and F〈i, m〉 = f .
As m̃ = m − 1, we have that no hidden path exists w.r.t.
〈i, m〉. As i is undecided at m, we thus have, by definition
of u − Opt0 and the fact that a time ≤ m has been revealed
to 〈i, m〉, that Ki∃0 while ¬Ki∃correct(0) at m. We there-
fore have that Ki∃0 at m for the first time. Therefore, as
m > m̃ ≥ 0, there exists a process j such that K j∃0 at m −1
and s.t. 〈 j, m − 1〉 is seen by 〈i, m〉. Thus, by Lemma 11
and since ¬Ki∃correct(0), we have F〈i, m〉 < t− 1, and so
f = F〈i, m〉 < t − 1.

We thus have that if f = t − 1, then every process that
completes round f + 2 decides by time f + 1 at the latest.

We move on to show Validity and Uniform Agreement.
Henceforth, let i be a (possibly faulty) process that decides
in some run of u − Opt0, let m be the decision time of i , and
let v be the value upon which i decides.

Validity: If v = 0, then by definition Ki∃correct(0) at m,
and so Ki∃0 at m, and in particular ∃0. If v = 1, then by
definition ¬Ki∃0, and so the initial value of i is 1, and so ∃1.
Either way, we have ∃v as required.

Uniform Agreement: If v = 0 then i decides 0 at the first
time m such that Ki∃correct(0) holds. From Lemma 11 we
get that m ≥ 1 and for every process j that is active at
time m, it holds that K j∃0 at time m, at the latest. There-
fore, no process decides 1. We now show that if v = 1,
then 0 is never decided upon in the current run. For the rest
of this proof we assume, therefore, that v = 1; therefore, by

definition of u − Opt0, we have that both¬Ki∃0 and no hid-
den path exists w.r.t. 〈i, m〉. By Lemma 7, we thus have that
Kinot_known(∃0) at m, and in particular not_known(∃0)
at m. By a trivial induction, as in the proof of Theorem 2,
we have that not_known(∃0) at every time later than m. In
particular, we have that no correct process ever learns of an
initial value of 0 (as not_known(∃0) would never hold from
that point on), and so ∃correct(0) never holds; therefore,
K j∃correct(0) never holds for any j , and so by definition of
u − Opt0 no process ever decides upon 0, and the proof is
complete.

C Proof of Lemma 19

We first prove Part 1; If m = 0, then there exists a run r ′ =
Q[β] of Q, s.t. 1) r ′

i (0)=ri (0), 2) in r ′ all initial values are
0, and 3) i never fails in r ′. Hence, in P0[β] all decisions
are taken at time m =0, and therefore so is the last decision.
Therefore, the last decision in r ′ must be taken at time 0.
As i never fails in r ′, by Decision it must decide at some
point during this run, and therefore must decide at 0 in r ′. As
ri (0)=r ′

i (0), i decides at 0 in r as well, as required.
If m >0, then there exists a process j s.t. K j∃0 at m − 1

in r and 〈 j, m − 1〉 is seen by 〈i, m〉. Thus, there exists a
run r ′ = Q[β] of Q, s.t. 1) r ′

i (m) = ri (m), and 2) i and
j never fail in r ′. Thus, all processes that are active at m in
r ′ see 〈 j, m − 1〉 in r ′ and therefore know ∃0 in r ′. Hence,
in P0[β] all decisions are taken by time m, and therefore so
is the last decision. Therefore, the last decision in r ′ must
be taken no later than at time m. As i never fails in r ′, by
Decision it must decide at some point during this run, and
therefore must decide by m in r ′. As ri (m)=r ′

i (m), i decides
by m in r as well, as required.

We now prove Part 2. If m =0, then by Lemma 11, t=0.
There exists a run r ′ = Q[β] of Q, s.t. 1) r ′

i (0) = ri (0),
and 2) in r ′ all initial values are 0. Therefore, as t = 0, we
have by Lemma 11 that all processes know ∃correct(0) at
m = 0 in r ′. Hence, in u−P0[β] all decisions are taken at
time m = 0, and therefore so is the last decision. Therefore,
the last decision in r ′ must be taken at time 0 as well. Since
t=0, i never fails in r ′, and so by Decision it must decide at
some point during this run, and therefore must decide at 0 in
r ′. As ri (0)=r ′

i (0), i decides at 0 in r as well, as required.
If m > 0, then there exists a process j s.t. K j∃0 at m−1

in r and 〈 j, m − 1〉 is seen by 〈i, m〉 in r . Furthermore, as
t < n, there exists a set of processes I s.t. 1) i, j /∈ I , 2)
|I | = t−F〈i, m〉−1, and 3) 〈k, m−1〉 is seen by 〈i, m〉 for
every k ∈ I . Thus, there exists a run r ′ = Q[β] of Q, s.t. 1)
r ′

i (m)=ri (m), 2) i and j never fail in r ′, 3) all of I fail in r ′ at
m−1, successfully sending messages only to i , and 4) every
process at m−1 in r ′ that is not seen by 〈i, m〉, is not seen by
any other process at m as well. We henceforth reason about

123

Unbeatable consensus 143

r ′. Every process k �= j that is active at m sees 〈 j, m−1〉
and furthermore satisfies F〈k, m〉 ≥ F〈i, m〉 + |I | = t − 1.
Thus, by Lemma 11, Kk∃correct(0) at m, and thus k decides
at time m in u−P0[β]. Additionally, as K j∃0 at m −1, by
Lemma 11 K j∃correct(0) at m, and thus j decides at time
m in u−P0[β]. Hence, in u−P0[β] all decisions are taken
by time m, and therefore so is the last decision. Therefore,
the last decision in r ′ must be taken no later than at time m.
As i never fails in r ′, by Decision it must decide at some
point during this run, and therefore must decide by m in r ′.
As ri (m) = r ′

i (m), i decides by m in r as well, as required.

References

1. A. Castañeda, Y. A. Gonczarowski, and Y. Moses. Unbeatable set
consensus via topological and combinatorial reasoning. In: pro-
ceedings of the 2016 ACM symposium on principles of distributed
computing, PODC 2016, Chicago, IL, USA, July 25-28, pp. 107–
116, (2016)

2. A.Castañeda,Y.Moses,M.Raynal, andM.Roy. Early decision and
stopping in synchronous consensus: a predicate-based guided tour.
In: proceedings 5th international conference networked systems,
NETYS 2017, Marrakech, Morocco, May 17-19, pp. 206–221,
(2017)

3. Charron-Bost, B., Schiper, A.: Uniform consensus is harder than
consensus. J. Algorithms 51(1), 15–37 (2004)

4. B. Coan. A communication-efficient canonical form for fault-
tolerant distributed protocols. In: proceedings 5th ACM sympo-
sium on principles of distributed computing, pp. 63–72, (1986)

5. A. Dan, R. Manohar, and Y. Moses. On using time without clocks
via zigzag causality. In: proceedings of the ACM symposium on
principles of distributed computing, PODC2017,Washington, DC,
USA, July 25-27, pp. 241–250, (2017)

6. D. Dolev. Beep protocols (personal communication)
7. Dolev, D., Reischuk, R., Strong, H.R.: Early stopping in Byzantine

agreement. J. ACM 34(7), 720–741 (1990)
8. D. Dolev and H. R. Strong. Requirements for agreement in a dis-

tributed system. In: H. J. Schneider, editor, Distributed data bases,
pp. 115–129. North-Holland, (1982)

9. Dutta, P., Guerraoui, R., Pochon, B.: The time-complexity of local
decision in distributed agreement. SIAM J. Comput. 37(3), 722–
756 (2007)

10. Dwork, C., Moses, Y.: Knowledge and common knowledge in a
Byzantine environment: crash failures. Inf. Comput. 88(2), 156–
186 (1990)

11. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about
Knowledge. MIT Press, London (2003)

12. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of dis-
tributed consensus with one faulty processor. J. ACM 32(2),
374–382 (1985)

13. Gafni, E., Guerraoui, R., Pochon, B.: The complexity of early
deciding set agreement. SIAM J. Comput. 40(1), 63–78 (2011)

14. Goren, G., Moses, Y.: A preliminary version appeared in PODC
2018. Silence. J. ACM 67(1), 1–26 (2020)

15. V.Hadzilacos.On the relationship between the atomic commitment
and consensus problems. In: fault-tolerant distributed computing,
pp. 201–208, (1986)

16. Halpern, J.Y., Moses, Y.: Knowledge and common knowledge in a
distributed environment. A preliminary version appeared in PODC,
1984. J. ACM 37(3), 549–587 (1990)

17. Halpern, J.Y.,Moses, Y.,Waarts, O.: A characterization of eventual
byzantine agreement. SIAM J. Comput. 31(3), 838–865 (2001)

18. M. Herlihy, Y. Moses, and M. R. Tuttle. Transforming worst-case
optimal solutions for simultaneous tasks into all-case optimal solu-
tions. In PODC, pp. 231–238, (2011)

19. Keidar, I., Rajsbaum, S.: A simple proof of the uniform consensus
synchronous lower bound. Inf. Process. Lett. 85(1), 47–52 (2003)

20. Y. Moses. Relating knowledge and coordinated action: the knowl-
edge of preconditions principle. In: proceedings fifteenth confer-
ence on theoretical aspects of rationality and knowledge, TARK
2015, Carnegie Mellon University, Pittsburgh, USA, June 4-6,
2015., pp. 231–245, (2015)

21. Moses, Y., Tuttle, M.R.: Programming simultaneous actions using
common knowledge. Algorithmica 3, 121–169 (1988)

22. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the
presence of faults. J. ACM 27(2), 228–234 (1980)

23. M. Raynal. Optimal early stopping uniform consensus in syn-
chronous systems with process omission failures. In: SPAA, pp.
302–310. ACM Press, (2004)

24. Wang, X., Teo, Y.M., Cao, J.: A bivalency proof of the lower bound
for uniform consensus. Inf. Process. Lett. 96(5), 167–174 (2005)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Unbeatable consensus
	Abstract
	1 Introduction
	1.1 Unbeatability
	1.2 Contributions
	1.3 Roadmap

	2 Intuition
	3 Preliminary Definitions
	3.1 Model of Computation
	3.2 Knowledge

	4 Unbeatable consensus
	4.1 Deriving an unbeatable protocol
	4.2 Testing for knowing that nobody knows
	4.3 Comparing Opt0 to previous protocols
	4.4 Hidden paths and agreement

	5 Unbeatable uniform consensus
	5.1 Deriving an unbeatable protocol
	5.2 Unbeatability of u-Opt0
	5.3 Comparing u-Opt0 to Previous Protocols

	6 Efficient implementations and stopping times
	7 Alternative notions of unbeatability
	8 Final discussion
	8.1 More related work
	8.2 Conclusions

	Acknowledgements
	A Additional Proofs of Sect. 4
	B Proof of Theorem 4
	C Proof of Lemma 19
	References

